Thickness and Information in Dynamic Matching Markets

Mohammad Akbarpour

Stanford Graduate School of Business

Joint work with Shengwu Li & Shayan Oveis Gharan

Matching Markets

Kidney Exchange

School Choice

Labor Markets

Dating

NRMP

Static Matching Markets

Theory:

[Gale-Shapley, 1962], [Shapley-Shubik, 1971], [Shapley-Scarf, 1971], [Kelso-Crawford, 1982], [Roth, 1982, 1984], [Immorlica-Mahdian, 2005], [Hatfield-Milgrom, 2005], [Che-Kojima, 2007], [Ostrovsky, 2008], [Kojima-Path (1999), [A **Set** (1999), [A Set (1999), [A

[Abdulkadiroglu-Pathak-Roth, 2005, 2009], [Abdulkadiroglu-Pathak-Roth, 2005, 2006], [Pathak-Sonmez, 2013], [Abdulkadiroglu-Angrist-Dy Strak Maine Pathak, 2011], ...

Kidney Exchange: Efficiency

[Roth-Sonmez-Unver, 2003, 2005, 2007], [Abraham-Blum-Gandholm, 2007], [Unver, 2010], [Ashlagi-Roth, 2013], [Ashlagi-Gamarnik-Rees-Roth, 2012], ...

Other Applications

[Peranson-Roth, 1999], [Jolls-Posner-Roth, 2001], [Sonmez-Switzer, 2013], [Che-Koh, 2014], [Pycia-Unver, 2014], ...

The Static Question

Gale-Shapley (1962):

Which agents to match?

Dynamic Matching Markets

DONATE	Department of Education						
Kidney Exchange	School Choice	Labor Markets					
Dating	EXAMPLESIDENT MATCHING PROGRAM®	We Need Your Help!! Foster Care					
The composition of options is endogenously							

determined by the matching algorithm

A New Question

Which agents to match?

(Widely studied)

When to match agents?

This Talk

Motivating Example: Kidney Exchange

Biological compatibility:

© 2012 Terese Winslow LLC U.S. Govt. has certain rights

Value of Waiting: More Information

1- Future trade network (*i.e.* new matching opportunities)

Value of Waiting: More Information

1- Future trade network (i.e. new matching opportunities)

2- Agents' urgency of needs

Questions about Timing

• How significant is the (option) value of waiting?

• What is the optimal waiting time?

• What kind of information is valuable?

• Do agents have incentive to misreport something?

Timing in Kidney Exchange

UNITED NETWORK FOR ORGAN SHARING

Daily

Weekly

Monthly

Quarterly

This Paper: A New Model

• Agents arrive and depart continuously over time

• Explicit modeling of the matching network

A central planner observes the network, and agents
who are about to depart, and continuously matches agents

• The goal is to maximize social welfare

This Paper: Main Findings

1- Value of waiting can be very large

• Waiting thickens the trade network (*i.e.* provides *liquidity*)

• So, we can react to urgent cases with high probability

This Paper: Main Findings

2- Information of agents' urgency of needs is highly valuable

 The planner can be patient with respect to those who are not in urgent need, thus maintain market thickness.

3- **Incentive-Compatibility**: When urgency information is private, we design a dynamic mechanism (without transfers) to extract it.

Related Literature (Static)

Theory:

[Gale-Shapley, 1962], [Shapley-Shubik, 1971], [Shapley-Scarf, 1971], [Kelso-Crawford, 1982], [Roth, 1982, 1984], [Immorlica-Mahdian, 2005], [Hatfield-Milgrom, 2005], [Che-Kojima, 2007], [Ostrovsky, 2008], [Kojima-Pathak, 2009], [Kojima-Manea, 2009], [Budish, 2011], [Budish-Che-Kojima-Milgrom, 2013], [Kojima-Pathak-Roth, 2013], [Hatfield-Kominers-Nichifor-Ostrovsky-Westkamp, 2013], [Echenique-Lee-Shum-Yenmez, 2013], ...

School Choice:

[Abdulkadiroglu-Pathak-Roth, 2005, 2009], [Abdulkadiroglu-Pathak-Roth, 2005, 2006], [Pathak-Sonmez, 2013], [Abdulkadiroglu-Angrist-Dynarski-Kane-Pathak, 2011], ...

Kidney Exchange:

[Roth-Sonmez-Unver, 2003, 2005, 2007], [Abraham-Blum-Sandholm, 2007], [Unver, 2010], [Ashlagi-Roth, 2013], [Ashlagi-Gamarnik-Rees-Roth, 2012], ...

Other Applications

[Peranson-Roth, 1999], [Jolls-Posner-Roth, 2001], [Sonmez-Switzer, 2013], [Che-Koh, 2014], [Pycia-Unver, 2014], ...

Related Literature (Dynamic)

• See the related work section of the paper

Outline

- Setup
 - A Model of Dynamic Matching
 - Designing Matching Algorithms
- Main Results
 - Value of Waiting
 - Value of Information & Mechanism Design
- Extensions
 - Welfare under Discounting and Optimal Waiting Time
 - Increasing Trade Frequency
- Concluding discussions

Model

• Agents arrive continuously with rate m

 There is an acceptable transaction between any two agents with i.i.d probability p

- Each agent gets *critical* independently with rate 1
- Agents depart when
 - get matched
 - get critical and perish

Model: Illustration

Model: Two Key Parameters

- Agents arrive continuously with rate m
- There is an acceptable transaction between any two agents with i.i.d probability p
- Each agent gets *critical* indep. with rate 1

 $d^{\circ} \mathbf{m} \times \mathbf{p}$ (from now on: $\mathbf{p} = \mathbf{d} / \mathbf{m}$)

Proxy for average degree (or *network sparsity*)

Matching Algorithm

The Planner observes:

- Set of agents in the pool (*nodes*)
- **G(t):** *Trade Possibilities* The set of acceptable transactions (edges) Network

- The Planner observes critical agents. (relax later)
- A Dynamic Matching Algorithm: $\Gamma: G(t) \rightarrow M$

A set of disjoint edges (possibly empty)

Matching: Illustration

Suppose waiting cost is zero. (relax later)

Minimize expected fraction of perished agents.

Agents who leave unmatched

Definition. For an algorithm ALG, target time T, Loss(ALG,T) := E[# of perished agents] m × (Expected) # of agents who arrive by time T

A Markov Decision Problem

of networks on on *n* nodes $\approx 2^{O(n^2)}$

Computationally Complex

Designing Matching Algorithms: Towards Optimum

Simple Local Matching Algorithms

1- *Greedy* **Algorithm**: Match agents upon their arrival to a random neighbor (if any).

2- *Patient* **Algorithm**: Match agents when they get critical to a random neighbor (if any).

Patient: Smart in 'When', Naïve in 'Who'

Patient chooses the optimal *time* to match an agent.

But it is naïve in optimizing over the network structure.

Outline

- Setup
 - A Model of Dynamic Matching
 - Designing Matching Algorithms
- Main Results
 - Value of Waiting
 - Value of Information & Mechanism Design
- Extensions
 - Welfare under Discounting and Optimal Waiting Time
 - Increasing Trade Frequency
- Concluding discussions

Comparing Algorithms

For this talk: (all are carefully discussed in the paper)

- Steady State
- Relatively large values of *m*

- d > 2

Value of Waiting

Theorem: In steady state, for large values of m,

- 1: Loss(Greedy) ≥ 1/(2d+1)
- 2: Loss(Patient) $\leq e^{-d/2}/2$

As a result,

Loss(Patient) \leq (**d** + 1/2) \cdot e^{-d/2} \cdot Loss(Greedy)

For d=8,

Loss(Patient) ≤ **0.17** · Loss(Greedy)

Timing vs. Optimization

Most of the gain is achieved by merely being patient

Greedy vs. Patient vs. OPT

Proof Ideas

Greedy: Composition of Market

The graph of agents (pool) is always an *empty graph*

Perishing rate = criticality rate $\cdot 1 = pool size$

Patient: Composition of Market

The pool is always *Erdős–Rényi* with parameter **d/m**

Perishing rate = pool size $(1 - d/m)^{pool size - 1}$ P(# matches = 0)

Bounding Losses

Key Findings, So Far

1- Patience can be highly valuable:

Loss(Patient) \leq (d+1/2) $\cdot e^{-d/2} \cdot Loss(Greedy)$

2- Most of the gain is achieved by being patient.

"How poor are they that have not **patience**! What wound did ever heal but by **degrees**?"

> *Othello (II, iii, p376) William Shakespeare*

Outline

- Setup
 - A Model of Dynamic Matching
 - Designing Matching Algorithms

Main Results

- Value of Waiting
- Value of Information & Mechanism Design
- Extensions
 - Welfare under Discounting and Optimal Waiting Time
 - Increasing Trade Frequency
- Concluding discussions

Value of Information

Criticality information and waiting are complements.

OPT Performance

 $E_{OPT}(Z_t)$: expected value of pool size under OPT

Information Structure and Utilities

Information Structure:

- Agents obsection that Time spent in pool

 - When they are critical -r × s(a) Underlying mce el paramettersis(matche) U(a) = Do not observe the exact trade network Otherwise •
- Planner observes:
 - The exact trade network
 - Does **not** observe when agents are critical

A Dynamic Mechanism

Patient-Mechanism:

- Ask for agents' departure times.
- When an agent announces getting critical, match her to a random neighbor.
- If she has no neighbors, never match her again.

Incentive Compatibility

Theorem. There exists a $r_1 > 0$ such that for any $r \le r_1$, the truthful strategy profile is an ε -Nash equilibrium for Patient-Mechanism, where $\varepsilon \rightarrow 0$ as $m \rightarrow \infty$.

Continuation Value

Problem: By being in the pool, agents learn about its distribution and update their beliefs.

Solution: Show that agents' posterior beliefs cannot go outside of the "concentration interval".

Hard to Commit: A New Punishment

Can we commit to kick agents out if they lie?

No other matches

Different Punishment

If an agent lied, keep her in the pool, but assign the lowest priority to her when a critical agent has multiple neighbors.

Ridkedyuteports being critical

Reasons to Be Greedy

• Waiting cost is high

• No information about agents' urgency of needs

 If p is very small or very large, Greedy and Patient's performances are close. (extreme cases: p=0 or p=1)

Key Findings

• When composition of market is a function of matching policy, market thickness (liquidity) is a key concern

 The information of urgency of agents' needs is very valuable, and it can be extracted with simple mechanisms without transfers

• The optimal waiting time is decreasing in waiting cost, arrival rate of agents, and match probabilities

A Lesson for Kidney Exchange

Multi-hospital issues: "Greedy" behavior of hospitals is very costly.

Assumption: *Ex ante* Homogeneous

In a multiple type model, tie breaking matters more. [Akbarpour, Nikzad, Rees, Roth, 2015 (working paper)]

Much Remains to Be Done

• Dynamics are important in many markets:

- We showed:
 - Timing can be a first-order concern
 - Dynamic networked markets can be analytically studied by exploiting tools from algorithm design and stochastic processes
- *Much* work remains to be done:
 - Decentralized markets and prices
 - Platform competition
 - Dynamic stability

Last Policy Implication

Even the optimal algorithm cannot match all patients...

So, drink more water to prevent kidney failure!

Thank you!

Utility and Urgency of Needs

Patient Pool Size Markov Chain

No closed form expression for stationary distribution !

Patient Pool Size Balance Equation

Patient Pool Size Distribution

Patient Concentration Lemma

Lemma: For any $\varepsilon > 0$, there exist a $Z^* > m/2$ such that: $Pr(Z^* - m^{\frac{1}{2}+e} < Z_t < Z^* + m^{\frac{1}{2}+e}) \xrightarrow{m \to \infty} 1$

Planner's Trade-off

• Ideally, the planner aims to maximize:

The probability that a random agent has at least 1 edge $= 1 - (1 - \frac{d}{m})^{\text{pool size}}$

Market Thickness

- This is maximized by waiting and increasing pool size.
- But waiting is **costly**.

Increasing d and Market Thickness

Upper Bounding the Patient

First show that, $\tau_{mix}(\epsilon) \leq O(\log(m) \cdot \log(1/\epsilon))$.

Lemma: For any
$$T > 0$$
 and $\varepsilon > 0$,
Loss(Patient) $\leq e^{-d/2} / 2 + \tau_{mix}(\varepsilon) / T + \varepsilon \cdot m / d^2$

 π : stationary distribution of the pool size

$$E_{\pi}(Z_t)$$
: expected value of the pool size

Mixing Time and Total Variation

Definition. Let π be the stationary distribution of the Markov chain and \mathbf{z}_t be its distribution at time t, then the *mixing time* of this chain is defined as:

$$t_{\min}(\boldsymbol{\theta}) = \inf \{\mathbf{t} : \left\| \mathbf{z}_{t} - \boldsymbol{\rho} \right\|_{\mathsf{TV}} := \mathop{\text{a}}_{k=0}^{\mathsf{F}} \left\| \boldsymbol{\rho}(\mathbf{k}) - \mathbf{z}_{t}(\mathbf{k}) \right\| \neq \boldsymbol{\theta}\}$$

Smart Patient

Hazard Rate

	Time						
	6 mo.	1 yr.	2 yr.	3 yr.	4 yr.	5 yr.	
On dialysis (for kidneys)	84%	75%	61%	50%	42%	34%	