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Abstract

This paper proposes an entropy-based approach for aggregating information from misspecified
asset pricing models. The mixing weights assigned to different models are determined either by
minimizing the pricing errors of the aggregator or by minimizing the Hellinger distance of the
densities of the aggregator and a suitably chosen pivot model. The proposed method relaxes
the perfect substitutability of the candidate models, which is implicitly embedded in the linear
pooling procedures, and ensures that the weights are selected by a proper distance measure that
satisfies the triangular inequality. Our approach subsumes other pooling and model averaging
approaches, including Bayesian and other methods which assume a ”true model” exists (included
or not). The empirical results illustrate the robustness and the pricing ability of the aggregation
approach.
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1 Introduction

All models are misspecified by design as they are constructed to approximate a complex, latent

reality. The data generating processes are typically latent objects and models can be viewed as

partial maps. This is especially true when these models are incompletely specified and are estimated

by moment matching. Despite the obvious nature of the statement above, its accomodation remains

inconsistent and even contradictory in many instances. In particular, the analysis of misspecified

moment condition models is still in its infancy. It is often the case that there are several candidate

models. One problem that arises in this setup is that the pseudo-true values that characterize these

models are relative objects, depending on proposed models and even estimation criteria. Model

selection and model averaging by comparing relative distances can be misconceived. This problem

is somewhat mitigated in some situations, as in the context of comparing misspecified asset pricing

models using the Hansen-Jagannathan (Hansen and Jagannathan, 1991, 1997) distance that uses

the inverse of the second moment matrix of the test assets to weigh the pricing errors for all

candidate models.

However, there is another problem with the standard model selection procedure and pooling of

misspecified models. In general, the model selection procedure is designed to choose only one of

these models and ignores the information in the remaining models. This will be valid and meaningful

only if the ‘true’ DGP model is in the set of models considered and the model selection procedure

is consistent. But, as argued above, this is a highly unrealistic situation. More realistically, all

models are misspecified models.

Bernando and Smith (1994) characterize and offer a taxonomy of the different views regarding

model comparison and selection. The first perspective, that includes Bayesian model averaging and

frequentist model selection, is conditioning on one of the models being ‘true’. In this approach,

the ambiguity about the true model is resolved asymptotically and in the limit, the mixture that

summarizes the beliefs about the individual models assigns a weight of one to one of the mod-

els. Diebold (1991) provides an illuminating example of this in the context of Bayesian forecast

combination. Another possibility is also to assume that a “true model” exists but it is too com-

plicated or cumbersome to implement. In that respect, all of the candidate models are viewed as

approximations of this fully-specified belief model and hence misspecified. The third view dispenses

completely with the self-contradictory notion of a “true model” and treats the candidate models

as genuinely misspecified either because they are believed to represent different aspects of the un-

derlying data generating process or because the underlying structure is completely unknown. As

pointed out in Maasoumi (1993), “if models are misspecified in an indeterminate manner, then we

should not be aiming at the discovery of the ‘true data generating process’.”Good models reveal

1



information that is hopefully consistent with aspects of the undelying DGP.

In this paper, we take the view that the DGP/“true model” is likely not to be among the

competing models although we do not need to differentiate between the different perspectives. This

is a similar approach as the one adopted by Geweke and Amisano (2011, 2012) for prediction pooling

of misspecified models. We develop a generalized entropy-based approach to mixing information

from different models. The minimum Shannon entropy or Kullback-Leibler information criterion

(KLIC) used by Geweke and Amisano (2011, 2012) and Hall and Mitchell (2007) is a special case

of this framework. In this paper, our generalization is facilitated by the fact that we are not mixing

densities so that the combination does not need to commute with any possible marginalization of the

distributions involved (McConway, 1981; Genest, Weerahandi and Zidek, 1984). More importantly,

unlike Geweke and Amisano (2011), we choose a divergence measure for selecting the mixture

weights which is a proper measure of distance since it satisfies the triangular inequality. The

generalized entropy also allows us to relax the perfect substitutability of the candidate models

which is implicitly embedded in the lineal pooling procedures. Finally, our closeness measure is

appropriate for clustering models which might be particularly useful and informative if the set of

candidate models is large. The model clustering will identify similar attributes across models and

act effectively as a dimension reduction device by reducing the set of information-enhancing models.

Our contributions can be summarized as follows. On methodological side, we propose an

information-theoretic approach to aggregating information in misspecified asset pricing models.

The optimal aggregator takes a harmonic mean form with geometric and linear weighting schemes

as special cases. The generalized entropy criterion that underlies our approach allows us to circum-

vent two serious drawbacks of the standard linear pooling. First, it ensures that the divergence

measure between the densities of the pricing errors of candidate models is a proper distance mea-

sure that is positive, symmetric and satisfies the triangular inequality (Maasoumi, 1993). Second,

the use of the harmonic mean as an aggregator relaxes the infinite substitutability assumption be-

tween models which is implicit in linear aggregation. On the practical side, our mixing procedure

employs information from all models by assigning weights depending on the model’s contribution

to the overall reduction of the pricing errors. The weighted stochastic discount factor preserves the

integrity of each structural model and pools the relevant information from each model in an efficient

way. This stands in sharp contrast with the existing methods in the literature that either select

factors from a set of candidate factors or choose a single (‘least misspecified’) model from a set of

candidate models. Both of these cases result in loss of information from dropping factors or models.

Our empirical analysis reports substantial improvements (in terms of pricing error reduction) from

aggregation.

Ultimately, the reason so many find that almost all kinds of pooling and mixing methods ”per-
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form well” can be readily gleaned from the classical results in clasical linear regression. Constraints

(such as omitted components), even false constraints, are variance (uncertainty) reducing, with a

cost on correct centering (bias). But the latter has an uncertain characterization when the true

DGP/model is not known.

The rest of the paper proceeds as follows. Section 2 discusses the main setup for evaluating

asset pricing models and introduces the approach to model aggregation. Section 3 describes the

candidate consumption-based asset pricing models and presents the empirical results. Section 4

concludes.

2 Models and Aggregation

2.1 SDF and Hansen-Jagannathan Distance

Let R denote the returns on N test assets and m ∈M be an admissible stochastic discount factor

(SDF) that prices the test assets correctly,

E[Rm] = q, (1)

where q denotes an N×1 vector of payoffs (a vector of ones if R are gross returns). Furthermore, let

y(γ) be a candidate stochastic discount factor that depends on a k-vector of unknown parameters

γ ∈ Γ, where Γ is the parameter space of γ. If y(γ) prices the N test assets correctly, then the

vector of pricing errors, e(γ), of the test assets is exactly zero:

e(γ) = E[Ry(γ)]− q = 0N . (2)

However, the pricing errors are nonzero when the asset-pricing model is misspecified. The squared

Hansen-Jagannathan (Hansen and Jagannathan, 1991, 1997) distance

δ2 = min
γ∈Γ

min
m∈M

E[(y(γ)−m)2] (3)

provides a misspecification measure of y(γ) and can be used for estimating the unknown parameters

γ. It is sometimes more convenient to solve the following dual problem:

δ2 = min
γ∈Γ

max
λ∈<N

E[y(γ)2 − (y(γ)− λ′R)2]− 2λ′q, (4)

where λ is an N ×1 vector of Lagrange multipliers. Note that λ′R provides the smallest correction,

in mean squared sense, to y(γ) in order to make it an admissible SDF. Note that for a given SDF

y(γ) and γ, the vector of Lagrange multipliers and the squared Hansen-Jagannathan distance can

be expressed as

λ = U−1e(γ), (5)
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and

δ2(γ) = e(γ)′U−1e(γ), (6)

where U = E[RR′].

Importantly, Hansen and Jagannathan (1991) provide a maximum pricing error interpretation

of the distance δ(γ). Consider a portfolio a with unit second moment, i.e., a′Ua = 1. By the

Cauchy-Schwartz inequality, the squared pricing error of this portfolio is

(a′e(γ))2 = (a′U
1
2U−

1
2 e(γ))2 ≤ (a′Ua)(e(γ)′U−1e(γ)) = δ2(γ). (7)

Specifically, the portfolio a = U−1e(γ)/δ(γ) has a pricing error δ(γ). Then,

max
a: a′Ua=1

|a′e(γ)| = δ(γ), (8)

and δ(γ) can be interpreted as the maximum pricing error that one can obtain from using y(γ) to

price the test assets.

The Hansen-Jagannathan distance has an information-theoretic interpretation too. Let P and

Q be two probability measures. The generalized entropy (minimum contrast) or Cressie-Read

(Cressie and Read, 1984) divergence from Q to P is given by

Iπ(P,Q) = φπ (dQ/dP ) dQ, (9)

where

φπ(x) =
1

π(π + 1)

(
xπ+1 − 1

)
(10)

is the Cressie-Read power divergence family of functions. Almeida and Garcia (2012) show that for

a fixed vector of parameters γ, the primal and dual problems in the SDF framework can be written

as

δπ(γ) = min
m∈M

E

[
(1 +m− y(γ))π+1

π(π + 1)

]
and

δπ(γ) = max
λ∈<N

λ′q − E
[

(πλ′R)π+1

π + 1
+ (y(γ)− 1)λ′R+

1

π(π + 1)

]
,

respectively. The dual problem for the Hansen-Jagannathan distance is obtained for π = 1 (see

Almeida and Garcia, 2012).

2.2 Aggregation

Suppose there are M proposed misspecified models, ŷi = yi(γ̂i), i = 1, ...,M, for the unknowable

true model m. We allow for both linear and nonlinear SDF specifications as well as nested and

non-nested SDFs. For the sake of argument, we assume that the model parameters for each model
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are estimated by minimizing the Hansen-Jagannathan distance. Our approach in this paper is to

treat each model as an incomplete ‘indicator’ of the latent DGP. Then, a model averaging rule

would aggregate information from all of these models and construct a pseudo-true model ỹ.

Here, we follow Maasoumi (1986) in characterizing the solution for ỹ. Let yt = (ŷ1,t, ..., ŷM,t)
′

be the i-th row of the T ×M matrix Y and ỹ = h(ŷ1, ..., ŷM ), where h is an aggregator or index

function. Note that it might be more convenient to work withe the estimated pricing errors ei(γ̂i),

i = 1, ...,M , instead of ŷi’s. We are interested in finding the aggregator ỹt with a distribution that

is as close as possible to the multivariate distribution of ŷi’s. Information-theoretic or entropy-

based approach to general measures of divergence between distributions are readily provided by

information or entropy theory. Maasoumi (1986) shows that generalizing the pairwise criteria of

divergence to a general multivariate context results in the following measure of divergence:

Dρ(ỹ, Y ;w) =M
i=1 wi

{
T
t=1ỹt

[(
ỹt
yi,t

)ρ
− 1

]/
ρ(ρ+ 1)

}
,

The aggregator that minimizes Dρ(ỹ, Y ;w) subject to M
i=1wi = 1 is given by

ỹ∗t ∝
[
M
i=1wiy

−ρ
i,t

]−1/ρ
.

Note that a linear pooling of models is obtained as a special case when ρ = −1.

In order to implement the above aggregation scheme, we need to estimate the unknown param-

eters w = (w1, ..., wM )′ and ρ. We propose two methods for estimating these parameters.

The first methods is, for given (ŷ1,t, ..., ŷM,t)
′ obtained in a preliminary step by minimizing

the Hansen-Jagannathan distance for each model and candidate values for w and ρ, construct the

pricing errors of the aggregator

ẽT (w, ρ) =
1

T

T∑
t=1

Rt

[
M
i=1wiŷ

−ρ
i,t

]−1/ρ
− q.

Then, the unknown parameters θ = (w′, ρ)′ are obtained as

θ̂ = arg min ẽT (θ)′

(
1

T

T∑
t=1

RtR
′
t

)−1

ẽT (θ)

subject to the restrictions wi ≥ 0 for i = 1, ..,M and M
i=1wi = 1. Note also that these parameters can

be estimated by any member of the Cressie-Read divergence family. For example, Kitamura, Otsu

and Evdokimov (2013) show the robustness of the Hellinger-distance estimator (discussed below)

for misspecified moment condition models. We use the Hansen-Jagannathan distance estimator

due to its computational simplicity and maximum pricing error interpretation.

The other possibility is to estimate θ by minimizing the distance between two distributions. Let

P be a probability measure associated with some pivot with density p and q denote the density of
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the aggregator ỹt(θ) =
[
M
i=1wiy

−ρ
i,t

]−1/ρ
. Using the generalized entropy (Cressie-Read) divergence

from Q to P defined in (??)-(??) and imposing π = −1/2, we obtain the scaled Hellinger distance

H ∝ I−1/2(P,Q) given by (Granger, Maasoumi and Racine, 2004)

H =
1

2

(
p1/2(x)− q1/2(x)

)2
dx. (11)

Unlike the other measures in the Cressie-Read divergence family, the Hellinger distance is a proper

measure of distance since it satisfies the triangular inequality. Minimizing H with respect to the

parameters θ, subject to the relevant restrictions, provides an estimate of θ. In the practical

implementation, we estimate p and q by a kernel density estimator and the integral in (??) is

evaluated numerically. The choice of a pivot is discussed in the next section.

3 Empirical Analysis

3.1 Data and Asset-Pricing Models

We analyze seven popular nonlinear asset-pricing models. The SDF for the first six models is log-

linear in the factors and takes the form yt(γ) = exp(γ′f̃t). For the last model, the SDF contains

conditional expectations that are approximated by a second-order Taylor series expansion under

the assumption that consumption growth is normally distributed with constant mean and variance.

1. CAPM of Brown and Gibbons (1985):

yCAPMt (α, β) = β(1− k)−αR−αm,t

or

ln(yCAPMt (γ)) = γ0 + γ1 ln(Rm,t), (12)

where Rm is the gross market return, β is the discount rate, α > 0 is the coefficient of relative

risk aversion, k is the proportion of wealth consumed in every period, γ0 = −α ln(β(1 − k))

and γ1 = −α.

2. Consumption CAPM (CCAPM):

yCCAPMt (α, β) = β
(

Ct
Ct−1

)−α
or

ln(yCCAPMt (γ)) = γ0 + γ1ct, (13)

where C denotes real per capita consumption of non-durable goods (seasonally adjusted),

ct = ln(Ct)−ln(Ct−1) is the growth rate in nondurable consumption, γ0 = ln(β) and γ1 = −α.
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3. Ultimate consumption (UC) model of Parker and Julliard (2005):

yUCt (α, β) = β
(
Ct+s
Ct−1

)−α
or

ln(yUCt (γ)) = γ0 + γ1c
s
t , (14)

where cst = ln(Ct+s)− ln(Ct−1) and s > 0.

4. Non-expected utility (EZ) model of Epstein and Zin (1989, 1991) and Weil (1989):

yEZt (α, β, σ) = β
1−α
1−σ

(
Ct
Ct−1

)−σ( 1−α
1−σ )

R
σ−α
1−σ
m,t , (15)

where 1/σ ≥ 0 is the elasticity of intertemporal substitution. Note that the restriction α = σ

reduces the model to the standard expected utility model (nonlinear CCAPM). The logarithm

of the SDF is given by

ln(yEZt (γ)) = γ0 + γ1ct + γ2 ln(Rm,t),

where γ0 = 1− ln(β), γ1 = − (1−α)(σ(1−φ)+φ)
1−σ , and γ2 = σ−α

1−σ .

5. Durable consumption CAPM (D-CCAPM) of Yogo (2006):

yD−CAPMt (α, β, σ, φ) = β
1−α
1−σ

(
Ct
Ct−1

)−σ( 1−α
1−σ )( Cd,t/Ct

Cd,t−1/Ct−1

)φ(1−α)

R
σ−α
1−σ
m,t , (16)

where Cd is consumption of durable goods and φ ∈ [0, 1] is the budget share of durable

consumption. When φ = 0, we have the classical non-expected (Epstein-Zin) utility model.

By imposing the additional restriction α = σ, we obtain the standard expected utility model

(nonlinear CCAPM). After taking logarithms, we have

ln(yD−CAPMt (γ)) = γ0 + γ1ct + γ2cd,t + γ3 ln(Rm,t), (17)

where γ0 = 1− ln(β), γ1 = − (1−α)(σ(1−φ)+φ)
1−σ , γ2 = φ(1− α), and γ3 = σ−α

1−σ .

6. External habit (EH) model of Abel (1990):

yEHt (α, β, τ) = β

(
Ct
Ct−1

)−α(Ct−1

Ct−2

)τ(α−1)

, (18)

where τ ≥ 0 is time-separability parameter, or

ln(yEHt (γ)) = γ0 + γ1ct + γ2ct−1, (19)

where γ0 = ln(β), γ1 = −α and γ2 = τ(α − 1). When τ = 0, EH model reduces to the

nonlinear CCAPM.
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7. Internal habit-persistence (IH) model of Constantinides (1990) and Ferson and Constantinides

(1991):

yIH(α, β, ω, µc, σ
2
ε ) =

βe−αct−1 {(ect + ω)−α + βωe−αctEt[(e
ct+1 + ω)−α]}

(ect−1 + ω)−α + βωe−αct−1Et−1[(ect + ω)−α]
, (20)

where

Et[(e
ct+1 + ω)−α] ≈ (eµc + ω)−α[1 + 0.5σ2

εαe
µc(eµc + ω)−2(αeµc − ω)].

using the assumption in Balduzzi and Kallal (1997) that ct+1 = µc+εt+1 with εt+1 ∼ N(0, σ2
ε ).

When ω = 0, IH model reduces to the nonlinear CCAPM.

In summary, the traditional CCAPM is nested within the EZ, EH, and IH models (when α = σ,

τ = 0, and ω = 0, respectively). The EZ, EH, and IH models are overlapping with the overlapping

part being the traditional CCAPM. The UC model is strictly non-nested with all the other models.

As a benchmark model (‘pivot’) for computing the Hellinger distance between the densities of

the scaled pricing errors of two models, we use the three-factor (FF3) model of Fama and French

(1993)

yFF3
t (γ) = γ0 + γ1rm,t + γ2smbt + γ3hmlt, (21)

where rm denotes the excess return on the market portfolio, smb is the return difference between

portfolios of stocks with small and large market capitalizations, and hml is the return difference

between portfolios of stocks with high and low book-to-market ratios (“value” and “growth” stocks,

respectively). The constant SDF model is the least favorable specification for pricing the test assets

but it provides a robust pivot. The FF3 model is one of the most successful empirical models and

the information contained in the smb and hml factors is somewhat orthogonal to the information

in the consumption-based CAPM models considered above.

The test asset returns are the monthly gross returns on the value-weighted 25 Fama-French

size and book-to-market ranked portfolios, and the 17 industry portfolios from Kenneth French’s

website. The sample period is February 1959 to December 2015. The consumption data that is used

to construct the growth rates ct, c
s
t and cd,t, is real per capita, seasonally adjusted consumption

of non-durable and durable goods from the Bureau of Economic Analysis. The excess return rm,t

on the value-weighted stock market index (NYSE-AMEX-NASDAQ) is obtained from Kenneth

French’s website. The gross market return is constructed by adding the one-month T-bill rate to

the excess return. The data for the smb and hml factors also come from Kenneth French’s website.

For the UC model of Parker and Julliard (2005), we use s = 23.

Since the use of the UC model results in loss of observations (last 23 months of the sample),

we also present results when the aggregation is performed over the set of models that excludes the

UC model.

8



The unknown parameters are estimated by minimizing the Hansen-Jagannathan distance in

(??) which is equivalent to

γ̂ = arg min
γ∈Γ

eT (γ)′
(

1

T

∑T

t=1
RtR

′
t

)−1

eT (γ),

where eT (γ) denotes the sample pricing errors of the model. Plugging in the estimated parameters,

the sample Hansen-Jagannathan distance is given by

δ̂ =

√
eT (γ̂)′

(
1

T

∑T

t=1
RtR′t

)−1

eT (γ̂).

3.2 Results

For starting values, we use the inverse of the Hansen-Jannathan distance for each model and linear

pooling, i.e., ŵi = (1/δ̂i)/
M
i=1(1/δ̂i) for i = 1, ...,M and ρ = −1. We refer to ‘method1’ in the

tables as the method for estimating θ = (w′, ρ)′ by minimizing the Hansen-Jagannathan distance

for the aggregator SDF. We refer to ‘method2’ as the method that minimizes the Hellinger distance

between the densities of the aggregator and the pivot (3-factor Fama-French model).

The tables report the estimates of the Hansen-Jagannathan distances of the 7 consumption-

based asset pricing models, the benchmark (FF3) model and the two aggregators. They also report

the estimated weights that the two aggregators assign to each individual model as well as the

estimate of ρ. It should be noted that the specification test (Hansen-Jagannathan distance test)

rejects overwhelming the null of correct specification for all models. Thus, the aggregation is

performed for misspecified models.

In order to assess the robustness of our aggregation procedure across different portfolios of

test assets, we consider the following portfolios: (1) 25 Fama-French and 17 industry portfolios,

(2) 25 Fama-French portfolios, (3) 17 industry portfolios and (4) 25 Fama-French, 17 industry

portfolios and the gross return on the risk-free asset. As documented in the literature, the 3-factor

Fama-French model performs best for pricing the 25 Fama-French portfolios. This should present

a challenge for our aggregation since none of the consumption-based models provide proxies of the

smb and hml factors in the FF3 model. Also, unlike the portfolio returns, the gross return on the

risk-free asset is highly persistent and most models have difficulties pricing this asset.

The results are presented in Tables 1, 2 and 3. Table 1 reports results when the aggregation

is performed over all consumption-based asset pricing models. Since the UC model results in loss

of observations at the end of the sample, Table 2 presents results when this model is not included

in the aggregation. Finally, we include the benchmark (FF3) model in the Hansen-Jagannathan

distance type of aggregation and report the results in Table 3.
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The results in Table 1 illustrate clearly the advantages of our aggregation method. The ag-

gregation reduces the pricing errors of the individual models in all four cases. It also fares very

favorably to the empirically most successful Fama-French model. Figures 1 and 2 plot the SDFs

for each model and the weighted (aggregated) SDF that uses information from all models for the

25 Fama-French and 17 industry portfolios. The aggregator SDF based on minimizing the Hansen-

Jagannathan distance strikes a nice balance between the volatility of the different models. Although

it assigns the largest weight to the D-CCAPM, it reduces its volatility and its pricing errors. The

second aggregation method shrinks the SDF towards the SDF of the FF3 model although it cannot

match fully the performance of this pivot.1 It is also interesting to see that the aggregator based

on the Hansen-Jagannathan distance closely resembles the dynamics and performance (in terms of

pricing errors) of the benchmark model despite of the different information sets.

The aggregation methods are also quite robust to different sets of test assets as they adapt

and recalibrate the weights across the different models. While the D-CCAPM receives the largest

weight for the 25 FF portfolio returns, the EH model weight dominates for the 17 industry portfolio

returns for the first aggregation method. Dropping the UC model does not deteriorate and even

improves the performance of the aggregator.

Including the FF3 model in the aggregation (Table 3) delivers the smallest pricing errors across

all test asset returns. While the aggregator is dominated by the FF3 model, mixing information

from the consumption-based models seems to be beneficial, especially for the 17 industry port-

folio returns. Overall, the robust performance of the proposed method suggests that combining

information from different, possibly misspecified models, may offer substantial advantages.

4 Conclusions

Economic models are misspecified by design as they try to approximate a complex and often

an unknown true data generating process. Instead of selecting a single model for pricing assets,

decision making or forecasting, aggregating information from all these models may adapt better

to the underlying uncertainty and result in a more robust approximation. Information theory

and generalized entropy provide the natural theoretical foundation for dealing with these types of

uncertainty and partial specification. We capitalize on some insights from the information-theoretic

approach and propose a mixture method for aggregating information from different misspecified

asset pricing models. The optimal aggregator takes a harmonic mean form with geometric and linear

weighting schemes as special cases. In addition, the generalized entropy criterion that underlies

1In unreported results, we relax the positivity constraint on w which allows some poorly behaved models to receive
a negative weight in the aggregation procedure. Interestingly, this provides further, and often substantial, reduction
of the pricing errors which is accompanied by a much higher volatility of the pricing kernel.
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our approach allows us to circumvent some serious drawbacks of the standard linear pooling. The

application of the aggregator to combining consumption-based asset pricing models demonstrates

the advantages of our approach. Density forecasting using a large set of diverse, partially specified

models is another natural application of the proposed method.
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Table 1: Aggregation with the ultimate consumption (UC) model.

CAPM CCAPM UC EZ D-CCAPM EH IH FF3 method1 method2
25 Fama-French + 17 industry portfolios

δ̂ 0.4258 0.4324 0.4348 0.4147 0.4117 0.4287 0.4416 0.3956 0.4094 0.4186

θ̂1 0.0015 0.0000 0.0000 0.0915 0.9066 0.0000 0.0003 12.1623

θ̂2 0.0001 0.0003 0.0001 0.3586 0.0014 0.6393 0.0002 -0.9985
25 Fama-French portfolios

δ̂ 0.3150 0.3332 0.3338 0.3092 0.2978 0.3305 0.3412 0.2702 0.2988 0.3049

θ̂1 0.0364 0.0216 0.0213 0.0457 0.8274 0.0315 0.0162 0.1429

θ̂2 0.1724 0.3213 0.4160 0.0047 0.0314 0.0441 0.0101 -0.9967
17 industry portfolios

δ̂ 0.1393 0.1379 0.1387 0.1373 0.1366 0.1330 0.1491 0.1340 0.1328 0.1377

θ̂1 0.0005 0.0006 0.0004 0.0013 0.1634 0.8336 0.0003 -0.4760

θ̂2 0.1116 0.0033 0.0384 0.0019 0.0006 0.0909 0.7532 -0.9914
25 Fama-French + 17 industry portfolios + risk-free asset

δ̂ 0.5152 0.5224 0.5212 0.5120 0.5109 0.5173 0.5330 0.4840 0.5092 0.5166

θ̂1 0.0002 0.0001 0.1660 0.0005 0.6528 0.1804 0.0000 -0.9998

θ̂2 0.0012 0.2040 0.0005 0.0725 0.0027 0.7186 0.0005 -0.9948

Notes: This table reports the estimates for the Hansen-Jagannathan distance δ̂ and the aggregation

parameters θ̂ = (ŵ′, ρ̂)′ for the method based on minimizing the Hansen-Jagannathan distance

(method1) and on minimizing the Hellinger distance between the densities of the aggregator and

the FF3 model (method2).
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Table 2: Aggregation without the ultimate consumption (UC) model.

CAPM CCAPM EZ D-CCAPM EH IH FF3 method1 method2
25 Fama-French + 17 industry portfolios

δ̂ 0.4187 0.4237 0.4079 0.4054 0.4214 0.4361 0.3939 0.4022 0.4266

θ̂1 0.0003 0.0000 0.1009 0.8987 0.0000 0.0001 17.9530

θ̂2 0.0003 0.4211 0.0035 0.0718 0.0040 0.4992 -0.9639
25 Fama-French portfolios

δ̂ 0.3107 0.3283 0.3044 0.2930 0.3254 0.3399 0.2739 0.2919 0.3013

θ̂1 0.0056 0.0000 0.0004 0.9939 0.0000 0.0001 9.6285

θ̂2 0.2634 0.0002 0.5105 0.2254 0.0002 0.0003 -0.9989
17 industry portfolios

δ̂ 0.1407 0.1398 0.1394 0.1393 0.1379 0.1554 0.1343 0.1378 0.1405

θ̂1 0.0011 0.0013 0.0177 0.1901 0.7893 0.0004 -0.6099

θ̂2 0.5330 0.0989 0.0045 0.0031 0.1777 0.1828 -0.7963
25 Fama-French + 17 industry portfolios + risk-free asset

δ̂ 0.5009 0.5077 0.4974 0.4965 0.5048 0.5204 0.4744 0.4939 0.5027

θ̂1 0.0012 0.0000 0.1174 0.8805 0.0008 0.0000 23.2510

θ̂2 0.0219 0.2811 0.1327 0.0027 0.5521 0.0095 -0.9963
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Table 3: Aggregation without the ultimate consumption (UC) model but with FF3 model.

CAPM CCAPM EZ D-CCAPM EH IH FF3 method1
25 Fama-French + 17 industry portfolios

δ̂ 0.4187 0.4237 0.4079 0.4054 0.4214 0.4361 0.3939 0.3862

θ̂1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.9998 28.5482
25 Fama-French portfolios

δ̂ 0.3107 0.3283 0.3044 0.2930 0.3254 0.3399 0.2739 0.2696

θ̂1 0.0007 0.0000 0.0000 0.0005 0.0000 0.0002 0.9986 16.2997
17 industry portfolios

δ̂ 0.1407 0.1398 0.1394 0.1393 0.1379 0.1554 0.1343 0.1327

θ̂1 0.0006 0.0004 0.0116 0.0243 0.0368 0.0000 0.9263 10.6390
25 Fama-French + 17 industry portfolios + risk-free asset

δ̂ 0.5009 0.5077 0.4974 0.4965 0.5048 0.5204 0.4744 0.4695

θ̂1 0.0000 0.0000 0.0033 0.0032 0.0001 0.0000 0.9933 19.3069

Notes: This table reports the estimates for the Hansen-Jagannathan distance δ̂ and the aggregation

parameters θ̂ = (ŵ′, ρ̂)′ for the method based on minimizing the Hansen-Jagannathan distance

(method1).
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agg1.pdf

Figure 1: SDFs for different models and aggregator based on the first method.
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Figure 2: SDFs for different models and aggregator based on the second method.
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