
1

Prices and Auctions in Markets
with Complex Constraints

Paul Milgrom 

Stanford University & Auctionomics

September 2016



Product Heterogeneity

• What is a product? Debreu described commodities by their 
physical characteristics and their time & place of availability. 

• My return flight to SFO will use “time-space” resources. 

• Electricity in Palo Alto, CA at 2:00pm is not the same commodity 
as electricity in Palo Alto at 2:05pm, but in practice, the market 
price mechanism does not distinguish those.

• Debreu chapter 7 adds contingencies!

• When a product category lumps together heterogeneous 
items, there may be more constraints than just total resource 
constraints. 
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Violating Resource Constraints

• The cost of violating a resource constraint can be much higher 
than recognized by traditional neoclassical models

• Electricity markets: brown-outs

• Airlines: mid-air crashes
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Beyond Resource Constraints

• Standard assumptions incorporated in neoclassical economic 
formulations

• Static equilibrium: The only constraints on feasible allocations are 
“resource constraints”: demand must not exceed supply.

• Equilibrium dynamics: The only losses incurred when demand 
exceeds supply is that some potential user is unserved. 

• Failures of these two assumptions are a big part of the 
foundation of market design, requiring…

1. matching within a product category

2. additional constraints

4



EXAMPLES

Heterogeneity and Constraints
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Front Range Spaceport
6 miles west of Denver Airport
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Illustration by Luis Vidal + Architects

• Air traffic decisions are partly centralized, partly decentralized
• …but prices might help to guide better location and investment decisions. 



Virgin Galactic 
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On October 31, 2014, Virgin Galactic’s “VSS Enterprise” crashed 
spreading debris over 34 miles of the Mojave Desert.
The VSS Enterprise on October 30, 2014



Georgia Frontier Lands
Allocated 1803-1832
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Hoyt Bleakley and Joseph Ferrie (2014)



Land Lotteries in Georgia
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Hoyt Bleakley and Joseph Ferrie (2014)



Coase Theorem? 

• Using tax records, Bleakley and Ferrie find that…
• Initial Georgia land allocations changed little for 80+ years

• Resulting in ~20% loss in land values

• Allocations had become “unstuck” after about 150 years

• Mitigations using a designed market
• Alternative property rights:

• Example: users of property get options to buy nearby undeveloped 
properties

• Multi-lateral transactions
• Example: Developer buys multiple parts and subdivides.

• Centralized procedures.
• Example: a single large-scale auction event. 

• Variants of all of these are being employed for radio spectrum!
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Plots of Land are All Unique
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• Seattle, WA • San Antonio, TX



The Reallocation Challenge

• The initially allocated plots of 
land were small. 

• …but technical change led to
larger optimal plots. 
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• In the transition to efficient lot 
sizes, if bilateral trades are used,

• Very many transactions may be 
required

• Fractional transactions along a path 
to efficiency may temporarily 
reduce some plot sizes and reduce 
total output. 

• Several individual plot owners may 
have hold-out power that could 
scuttle an efficient transition.



The Economic Setting

• TV broadcast
• ~2200 UHF TV broadcasters in the United States + 800 in Canada
• Currently using channels 14-36 and 38-51
• 90% of viewers use cable or satellite (as of 2012)
• Stations can share a digital channel by multiplexing

• Mobile broadband
• Rapidly growing demand and value
• Most useful low frequency spectrum is already allocated

• Plan 
• Transition some frequencies to higher valued uses
• Provide a cash incentive for broadcasters to relinquish spectrum
• A market will how many channels in the transition
• Net positive revenue for the government 13



Co-Channel Interference 
Around One Station 
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From Reallocating Land…
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To Reallocating Radio Spectrum
About 130,000 co-
channel interference 
constraints, and about 
2.7 million constraints in 
the full representation!

The graph-coloring is NP-
complete. The FCC may 
sometimes be unable to 
determine, in reasonable 
time, whether a certain 
set of stations can be 
assigned to a given set of 
channels.



PRICES AND INCENTIVES IN THE 
“KNAPSACK PROBLEM”

An “In-Between” Model of O’Hare Airport?!? 
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Knapsack Problem

• Notation

• Knapsack size: ҧ𝑆.

• Items 𝑛 = 1,… ,𝑁

• Each item has a value 𝑣𝑛 > 0 and a size 𝑠𝑛 > 0.

• Inclusion decision: 𝑥𝑛 ∈ {0,1}.

• Knapsack problem:

𝑉∗ = max
𝑥∈ 0,1 𝑁

෍
𝑛=1

𝑁

𝑣𝑛𝑥𝑛 subject to෍
𝑛=1

𝑁

𝑠𝑛𝑥𝑛 ≤ ҧ𝑆.

• The class of knapsack problems (verification) is NP-complete, 
but there are fast algorithms for “approximate optimization.” 17



Dantzig’s “Greedy Algorithm”

• Order the items so that 
𝑣1

𝑠1
> ⋯ >

𝑣𝑁

𝑠𝑁
.

• Algorithm:

1. 𝑆1 ← ҧ𝑆. (Initialize “available space”)

2. For 𝑛 = 1,… ,𝑁

3. If 𝑠𝑛 ≤ 𝑆𝑛, set 𝑥𝑛 = 1, else set 𝑥𝑛 = 0.

4. Set 𝑆𝑛+1 = 𝑆𝑛 − 𝑥𝑛𝑠𝑛.

5. Next 𝑛.

6. End

• The items selected are 𝛼𝐺𝑟𝑒𝑒𝑑𝑦 𝑣; 𝑠 ≝ {𝑛|𝑥𝑛 = 1}.

• This function is “monotonic.”
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“Nearly the Same” Algorithm 
Can be Formulated as an Auction
• Let 𝑝 0 >

𝑣1

𝑠1
; 𝑆 0 = ҧ𝑆; and label all 𝑛 “Out.”

Discrete greedy algorithm

• For 𝑡 = 1,2, …𝑝(0)/𝜀.

• Mark “Rejected” any 𝑛 for whom 𝑠𝑛 + 𝑆 𝑡 − 1 > ҧ𝑆

• Set 𝑝 𝑡 = 𝑝 𝑡 − 1 − 𝜀 (where 𝜀 > 0 is the “bid decrement”)

• If some 𝑛 who is marked “Out” has 𝑣𝑛 > 𝑝 𝑡 𝑠𝑛, mark it “Accepted” 
and set 𝑆 𝑡 = 𝑆 𝑡 − 1 − 𝑠𝑛.

• Next 𝑡

Generalizable Insight: 

• Close equivalence between various clock auctions and related 
greedy algorithms (Milgrom & Segal).
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The LOS Auction

• Model (Lehman, O’Callaghan and Shoham (2002))

• Each item n is owned by a separate bidder. 

• Sizes 𝑠𝑛 are observable to the auctioneer.

• “LOS” Direct Mechanism

• Each bidder 𝑛 reports its value 𝑣𝑛.

• Allocate space to the set of bidders 𝛼𝐺𝑟𝑒𝑒𝑑𝑦(𝑣; 𝑠).

• Charge each bidder its “threshold price”, defined by:

𝑝𝑛 𝑣−𝑛; 𝑠 ≝ inf 𝑣𝑛
′ 𝑛 ∈ 𝛼𝐺𝑟𝑒𝑒𝑑𝑦 𝑣𝑛

′ , 𝑣−𝑛; 𝑠 .

• Theorem. The LOS auction is truthful. 
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LOS Mechanism Can Lead to 
Excessive Investments
• Consider a game in which, before the auction, each bidder 𝑛

can, by investing 𝑐, reduce the size of its item to 𝑠𝑛 − Δ. 

• Examples: Suppose there are 𝑁 items, each of size 1 and the 
knapsack has size 𝑁 − 1, so 𝛼𝐺𝑟𝑒𝑒𝑑𝑦 𝑣, 𝑠 = 1,… ,𝑁 − 1 .

• Losses from excessive investment: If Δ =
1

𝑁
and 𝑐 = 𝑣𝑁 − 𝜀, 

then there is a Nash equilibrium in which all invest, even 
though the cost is nearly N times the benefit. 

• Can a uniform price mechanism perform similarly well?
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Uniform-Price Greedy Mechanism

• Determine the allocation

1. Order the items so that 
𝑣1

𝑠1
> ⋯ >

𝑣𝑁

𝑠𝑁
.

2. Initialize 𝑛 ← 1 and set 𝑆1 ← 𝑆.

3. If 𝑠𝑛 > 𝑆𝑛, go to step 5

4. Increment n and go to step 3

5. Set 𝛼𝐴𝑙𝑡 𝑣, 𝑠 ← {1,… , 𝑛 − 1}.

• Set a supporting price (a “uniform” price of space) 

6. Define Ƹ𝑝 ≝ 𝑣𝑛/𝑠𝑛 (the “pseudo-equilibrium” price of space)

7. Set 𝑝𝑗 ← Ƹ𝑝𝑠𝑗 for 𝑗 = 1,… , 𝑛 − 1, and 𝑝𝑗 ← 0 for 𝑗 = 𝑛,… ,𝑁.

8. End

• Define 𝑉𝐴𝑙𝑡(𝑣, 𝑠) ≝ σ
𝑛∈𝛼𝐴𝑙𝑡(𝑣,𝑠) 𝑣𝑛. 22



Packing Efficiency and 
Truthfulness

• Theorem. The “Alt” mechanism is truthful. Moreover,

𝑉𝐺𝑟𝑒𝑒𝑑𝑦(𝑣, 𝑠) ≥ 𝑉𝐴𝑙𝑡(𝑣, 𝑠) ≥ 𝑉∗(𝑣, 𝑠) − 𝑆 − 𝑆𝐴𝑙𝑡 Ƹ𝑝.

• The bound on efficiency loss is observable: it is equal to the 
“value” of the unused space in the knapsack.  
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Investment Efficiency

• Suppose that each bidder n can, by expending 𝑐𝑛 ∈ 𝐶, determine the 
size 𝑠𝑛(𝑐𝑛) of its item, where 𝐶 is a finite set. Let 𝑛∗ denote the index 
of the first bidder not packed by the Alt mechanism.

• Notation: 

𝑉∗∗ ≝ max
𝑥, 𝑐 𝑐𝑛∗ = ⋯ = 𝑐𝑁 = 0

෍
𝑛
(𝑥𝑛𝑣𝑛 − 𝑐𝑛) 𝑠. 𝑡.෍

𝑛
𝑥𝑛𝑠𝑛(𝑐𝑛) ≤ 𝑆

𝑐𝑛
∗ ≝ argmax

𝑐𝑛∈𝐶
max
𝑥𝑛

𝑣𝑛𝑥𝑛 − Ƹ𝑝𝑠𝑛 𝑐𝑛 − 𝑐𝑛

• Theorem. The combined loss from packing and investment in Alt is 
(“observably”) bounded as follows:  

𝑉∗∗ − 𝑉𝐴𝑙𝑡(𝑠 𝑐∗ ) ≤ 𝑆 − 𝑆𝐴𝑙𝑡 𝑐∗ Ƹ𝑝
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Greedy Algorithms and Auctions

• In an auction with single-minded bidders, a greedy algorithm 
can be used to sort the bidders into two sets, winners and 
losers. 

• LOS Algorithm and Related: Select winners by a greedy algorithm; 
other bidders are losers. 

• DAA Algorithm and Related: Select losers by a greedy algorithm; 
other bidders are winners.

• The two categories are economically distinct because 

• winners collect payments

• losers do not

• The FCC descending clock auction is a DAA algorithm. 

• One could specify an ascending clock for an LOS-style algorithm. 25



How Well Does The Incentive Auction Work?
• Can’t run VCG on national-scale problems: 

can’t find an optimal packing

• Restrict attention to all stations within 
two constraints of New York City

• a very densely connected region

• 218 stations met this criterion

• Reverse auction simulator (UHF only)

• Simulation assumptions:

• 100% participation

• 126 MHz clearing target

• valuations generated by sampling from a 
prominent model due FCC chief 
economist (before her FCC appointment)  

• 1 min timeout given to SATFC



Comparative Performance of Incentive 
Auction Algorithms in Simulations

27

𝐿𝑜𝑠𝑠 =
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝐴𝑖𝑟

𝑉𝐶𝐺 𝑉𝑎𝑙𝑢𝑒
− 1



GREEDY ON MATROIDS

More Greedy Algorithms
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Matroid Terms Defined

• Given a fine “ground set” 𝑋, let ℘ 𝑋 denote its power set.

• Example: 𝑋 is the set of rows of a finite matrix

• Let ℛ ⊆ ℘ 𝑋 be non-empty and all its elements 
“independent sets.”

• Example: all linearly independent sets of rows in 𝑋.

• A “basis” is a maximal independent set.

• Example: a maximal linearly independent set of rows of 𝑋.

• The pair (𝑋, ℛ) (or just the set ℛ) is a matroid if

1. [Free disposal] If 𝑆′ ⊆ 𝑆 ∈ ℛ, then 𝑆′ ∈ ℛ .

2. [Augmentation Property] Given 𝑆, 𝑆′ ∈ ℛ, if 𝑆 > |𝑆′|, then 
there exists 𝑛 ∈ 𝑆 − 𝑆′ such that 𝑆′ ∪ 𝑛 ∈ ℛ. 29



Greedy Algorithm

• Given any collection of independent sets ℛ.

• Order the items so that 𝑣1 > ⋯ > 𝑣𝑁. (No volumes)

• Algorithm:

1. Initialize 𝑆0 ← ∅.

2. For 𝑛 = 1,… ,𝑁

3. 𝑆𝑛 ← ቊ
𝑆𝑛−1 ∪ 𝑛 if 𝑆𝑛−1 ∪ 𝑛 ∈ ℛ
𝑆𝑛−1 otherwise

4. Next 𝑛

5. Output 𝑆𝑁.
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Optimization on Matroids

• For simplicity, assume a unique optimum.

• Theorem. If ℛ is a matroid and 𝑆𝑁 is the greedy solution, then

𝑆𝑁 = argmax
𝑆∈ℛ

෍
𝑛∈𝑆

𝑣𝑛

• Intuition. Suppose that 𝑆∗ = 𝑖1, … , 𝑖𝑘 ∈ ℛ does not include 
the most valuable item, which is item 1. 

• Then 𝑆∗ is not optimal, because we can augment the set {1}
using items from 𝑆∗ to create a k item set that is strictly more 
valuable. 

• Notice that this means that if we have to choose between two 
items, then the greedy has identical continuations after both. 
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Full Proof is by Induction

• Suppose that the set selected by the greedy algorithm is 
{𝑔1, … 𝑔𝑘} and that the 𝑔𝑛 is the element with the lowest 
index that such that for the optimal set 𝑆, 𝑔𝑛 ∉ 𝑆. So, 𝑆 =
𝑔1, … , 𝑔𝑛−1 ∪ 𝑆′ and for each element 𝑠 ∈ 𝑆′, 𝑣𝑔𝑛 > 𝑣𝑠. 

• By the augmentation property, it is possible to augment 
{𝑔1, … , 𝑔𝑛} to a basis 𝐵 set by iteratively adding elements 
from 𝑆′, while omitting just one element, say Ƹ𝑠.

• By then 𝑆 was not optimal, because 𝐵 is better:

෍
𝑗∈𝐵

𝑣𝑗 −෍
𝑗∈𝑆

𝑣𝑗 = 𝑣𝑔𝑛 − 𝑣 Ƹ𝑠 > 0. ∎
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Matroids and Substitutes 

• Let  ℛ be a non-empty collection of independent sets 
satisfying free disposal.  

• For each good in 𝑥 ∈ 𝑋, there is a buyer 𝑣(𝑥) and a price 
𝑝(𝑥). The buyer’s demand is described by:

𝑉∗ ℛ, 𝑣 ≝ max
𝑆∈ℜ

෍
𝑥∈𝑆

(𝑣 𝑥 − 𝑝 𝑥 )

𝑑∗ 𝑝|ℛ, 𝑣 ≝ argmax
𝑆∈ℜ

෍
𝑥∈𝑆

(𝑣 𝑥 − 𝑝 𝑥 )

• Theorem. The items in 𝑋 are substitutes if and only if ℜ is a 
matroid.

• Intuition: Raise the price of item x. When it becomes too 
expensive and is “replaced by” some item y, the items chosen 
before and after in the greedy algorithm are unaffected.  

33



Proof Sketch

• Suppose that 𝑛 ∈ 𝑑∗ 𝑝|ℛ, 𝑣 and consider a price 𝑝′ 𝑛 > 𝑝(𝑛)
such that 𝑛 ∉ 𝑑∗ 𝑝\𝑝′(𝑛)|ℛ, 𝑣 . Let 𝑛′ ∉ 𝑑∗ 𝑝|ℛ, 𝑣 be the first 
new item chosen instead during the greedy algorithm with prices 
𝑝\𝑝′(𝑛). Let the state of the greedy algorithm when it is chosen be 
𝑆′ and let 𝑆 = 𝑆′ ∪ 𝑛 − {𝑛′}. 

• By the augmentation property, the the feasible next choices to 
augment 𝑆′ and 𝑆 are identical. Hence, 𝑑 𝑝\𝑝′ 𝑛 ℛ, 𝑣
= 𝑑 𝑝 ℛ, 𝑣 − 𝑛 ∪ {𝑛′}, as required.

• Conversely, if ℛ is not a matroid, then…
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Necessity of Matroids

• Theorem. If ℛ is a non-empty family that satisfies free disposal but 
not the augmentation property, then there is some vector of values 
𝑣 such that (the greedy algorithm “fails”) 𝑆𝑁 ∉ argmax

𝑆∈ℛ
σ𝑛∈𝑆 𝑣𝑛.

• Proof. ℛ does not have the augmentation property, so there is some 
𝑆, 𝑆′ ∈ ℛ such that 𝑆 > |𝑆′| and there is no 𝑛 ∈ 𝑆 − 𝑆′ such that 
𝑆′ ∪ 𝑛 ∈ ℛ.

• Let 𝜖 > 0 be small and take: 

𝑣𝑛 = ቐ
1 if 𝑛 ∈ 𝑆′

1 − 𝜖 if 𝑛 ∈ 𝑆 − 𝑆′

0 otherwise

• Then the greedy algorithm selects 𝑆′ and no elements of 𝑆 − 𝑆′, so 
its value is |𝑆′|, but 𝑆 achieves at least 1 − 𝜖 𝑆 > |𝑆′|.  ∎ 35



WHY SHOULD WE CARE?

Approximate Substitutes and the Incentive Auction

36



The Substitution Index

• Why does the DA algorithm perform so well? 

• Two conjectured reasons:
• Special constraints: the independent sets 𝒞?

• Special values: a set 𝒪 ⊆ 𝐶 where the optimum may lie?
• “Zero knowledge case”: 𝒪 = 𝐶.

• Definitions. Given the ground set 𝒳 and the constraints 𝒞 and 
possible optimizers 𝒪 that both satisfy free disposal, 

ℛ∗ 𝒞, 𝒪 ≝ argmax
ℛ 𝑎𝑚𝑎𝑡𝑟𝑜𝑖𝑑

ℛ⊆𝒞

min
𝑋∈𝒪

max
𝑋′∈ℛ
𝑋′⊆𝑋

|𝑋′|

|𝑋|

𝜌 𝒞, 𝒪 ≝ max
ℛ 𝑎𝑚𝑎𝑡𝑟𝑜𝑖𝑑

ℛ⊆𝒞

min
𝑋∈𝒪

max
𝑋′∈ℛ
𝑋′⊆𝑋

𝑋′

𝑋 37



Approximation Theorem

• Given the ground set 𝒳, any 𝒮 ⊆ 𝒫 𝒳 and any 𝑣 ∈ ℝ+
𝒳 , 

define notation as follows:

𝑉∗ 𝒮; 𝑣 ≝ max
𝑋∈𝒮

෍
𝑛∈𝑋

𝑣𝑛

• Theorem. The greedy solution on ℛ∗ approximates the 
optimum in worst case as follows:

min
𝑣>0

𝑉∗ ℛ∗; 𝑣

𝑉∗ 𝒪; 𝑣
= 𝜌 𝒞, 𝒪 .
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Proof Sketch, 1

• Let 

𝑣∗ ∈ argmin
𝑣>0

𝑉∗ ℛ∗; 𝑣
𝑉∗ 𝒪; 𝑣

, 𝜌∗ =
𝑉∗ ℛ∗; 𝑣∗

𝑉∗ 𝒪; 𝑣∗

• Among optimal solutions, choose 𝑣∗ to be one with the 
smallest number of strictly positive components.

• Without loss of optimality, we rescale 𝑣∗ so that the 
smallest strictly positive component is 1.

• The next step will show that every component of 𝑣∗ is 
zero or one, so that the values of the two minimization 
problems must exactly coincide. 
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Proof Sketch, 2

• Consider the family of potential minimizers ො𝑣(𝛼), where 

ො𝑣𝑛 𝛼 ≝ ቊ
𝛼 if 𝑣𝑛

∗ = 1
𝑣𝑛
∗ otherwise

• Then, 𝑣∗ = ො𝑣(1). The value of the objective for ො𝑣(𝛼) is

ො𝜌 𝛼 =
𝑉∗ ℛ∗; ො𝑣 𝛼

𝑉∗ 𝒪; ො𝑣 𝛼
=
𝛼 ෠𝑋 ∩ 𝑋ℛ∗ + σ𝑛∈ 𝒳− ෠𝑋 ∩𝑋ℛ∗

𝑣𝑛
∗

𝛼 ෠𝑋 ∩ 𝑋𝒪 + σ
𝑛∈ 𝒳− ෠𝑋 ∩𝑋𝒪

𝑣𝑛
∗

where

෠𝑋 ≝ 𝑛 𝑣𝑛
∗ = 1

𝑋𝒪 ∈ argmax
𝑆∈𝒪

෍
𝑛∈𝑆

𝑣𝑛
∗

𝑋ℛ∗ ∈ argmax
𝑆∈ℛ∗

෍
𝑛∈𝑆

𝑣𝑛
∗ 40



Proof Sketch, 3

ො𝜌 𝛼 =
𝛼 ෠𝑋 ∩ 𝑋ℛ∗ + σ𝑛∈ 𝒳− ෠𝑋 ∩𝑋ℛ∗

𝑣𝑛
∗

𝛼 ෠𝑋 ∩ 𝑋𝒫 + σ
𝑛∈ 𝒳− ෠𝑋 ∩𝑋𝒪

𝑣𝑛
∗

For ො𝜌 ⋅ to achieve its minimum of 𝜌∗ when 𝛼 = 1, it must be a 

constant function, which requires 
෠𝑋∩𝑋ℛ∗

෠𝑋∩𝑋𝒫
= 𝜌∗. Then, since 𝑣∗ is the 

minimizer with the fewest strictly positive elements, 𝑛 𝑣𝑛
∗ > 1 =

∅.  ∎
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WHAT IS GOING ON NOW?

The US Incentive Auction

42



Current Status
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The Incentive Auction “Stages”:
A Conceptual Illustration
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END

Thank you!
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