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Product Heterogeneity

* What is a product? Debreu described commodities by their
physical characteristics and their time & place of availability.
My return flight to SFO will use “time-space” resources.

Electricity in Palo Alto, CA at 2:00pm is not the same commodity
as electricity in Palo Alto at 2:05pm, but in practice, the market
price mechanism does not distinguish those.

* Debreu chapter 7 adds contingencies!

* When a product category lumps together heterogeneous
items, there may be more constraints than just total resource
constraints.

[2)




Violating Resource Constraints

* The cost of violating a resource constraint can be much higher
than recognized by traditional neoclassical models

Electricity markets: brown-outs
Airlines: mid-air crashes




Beyond Resource Constraints

» Standard assumptions incorporated in neoclassical economic
formulations

Static equilibrium: The only constraints on feasible allocations are
“resource constraints”: demand must not exceed supply.

Equilibrium dynamics: The only losses incurred when demand
exceeds supply is that some potential user is unserved.

* Failures of these two assumptions are a big part of the
foundation of market design, requiring...

matching within a product category
additional constraints




Heterogeneity and Constraints

EXAMPLES




Front Range Spaceport

6 miles west of Denver Airport
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[llustration by Luis Vidal + Architects

Air traffic decisions are partly centralized, partly decentralized
...but prices might help to guide better location and investment decisions.




Virgin Galactic

DmeQ4S6 hat&rprid@ldn Diggobern Bt (1SS Enterprise” crashed
spreading debris over 34 miles of the Mojave Desert.

Columbia Arrow Lecture



Georgia Frontier Lands
Allocated 1803-1832
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Hoyt Bleakley and Joseph Ferrie (2014)
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Hoyt Bleakley and Joseph Ferrie (2014)

Land Lotteries in Georgia



Coase Theorem?

* Using tax records, Bleakley and Ferrie find that...
Initial Georgia land allocations changed little for 80+ years
Resulting in ~¥20% loss in land values
Allocations had become “unstuck” after about 150 years

* Mitigations using a designed market

Alternative property rights:

Example: users of property get options to buy nearby undeveloped
properties

Multi-lateral transactions

Example: Developer buys multiple parts and subdivides.
Centralized procedures.

Example: a single large-scale auction event.
Variants of all of these are being employed for radio spectrum!
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Plots of Land are All Unique

* Seattle, WA * San Antonio, TX




The Reallocation Challenge

* The initially allocated plots of * ...but technical change led to
land were small. larger optimal plots.

Very manjy transactigns may be
required
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Fractiona| transactiops along a path
to efficiency may terporaril
reduce some plot sizes and reduce
total output.

Several individual plot owners may
have hold-out power that could
scuttle an efficient transition.




The Economic Setting

* TV broadcast
~2200 UHF TV broadcasters in the United States + 800 in Canada
Currently using channels 14-36 and 38-51
90% of viewers use cable or satellite (as of 2012)
Stations can share a digital channel by multiplexing

* Mobile broadband
Rapidly growing demand and value
Most useful low frequency spectrum is already allocated

* Plan
Transition some frequencies to higher valued uses
Provide a cash incentive for broadcasters to relinquish spectrum
A market will how many channels in the transition
Net positive revenue for the government




Co-Channel Interference

Around One Station




From Reallocating Land...
To Reallocating Radio Spectrum

About 130,000 co-
channel interference
constraints, and about
2.7 million constraints in
the full representation!

The graph-coloring is NP-
complete. The FCC may
sometimes be unable to
determine, in reasonable
time, whether a certain
set of stations can be
assigned to a given set of
channels.




An “In-Between” Model of O’Hare Airport?!?

PRICES AND INCENTIVES IN THE (6]
“KNAPSACK PROBLEM”




Knapsack Problem

* Notation
Knapsack size: S.
ltemsn=1,.., N
Each item has a value v,, > 0 and a size s,, > 0.

Inclusion decision: x,, € {0,1}.

* Knapsack problem:

N N
V* = max z v, X, Subject toz SpXn < S.

x€{0,1}N Lipn=1 n=1

* The class of knapsack problems (verification) is NP-complete,
but there are fast algorithms for “approximate optimization.”

(7]




Dantzig’s “Greedy Algorithm”

- Order the items so that =% > «-- > X
S1 SN

* Algorithm:
S, < S. (Initialize “available space”)
Forn=1,..,N
Ifs, <5,,setx, =1, elsesetx,, =0.
Set S, 11 =S, — x,5,.
Next n.
End

* The items selected are a®"¢¢% (v; s) & {n|x,, = 1}.
This function is “monotonic.”




“Nearly the Same” Algorithm
Can be Formulated as an Auction

- Let p(0) > %,- S(0) = S; and label all n “Out.”
1

Discrete greedy algorithm
* Fort =1,2,..p(0)/c.
Mark “Rejected” any n forwhom s,, + S(t — 1) > S
Setp(t) = p(t — 1) — € (where € > 0 is the “bid decrement”)

If some n who is marked “Out” has v,, > p(t)s,,, mark it “Accepted”
andsetS(t) =S(t—1) —s,,.

° Nextt

Generalizable Insight:

* Close equivalence between various clock auctions and related
greedy algorithms (Milgrom & Segal). (
19)




The LOS Auction

* Model (Lehman, O’Callaghan and Shoham (2002))
Each item n is owned by a separate bidder.
Sizes s,, are observable to the auctioneer.
* “LOS” Direct Mechanism
Each bidder n reports its value v,,.
Allocate space to the set of bidders a¢7¢¢%Y (v; s).

Charge each bidder its “threshold price”, defined by:
Pn (v—n; S) = inf{vﬂn € qbreedy (v1,1r U_n; S)} -

* Theorem. The LOS auction is truthful.




LLOS Mechanism Can Lead to
Excessive Investments

* Consider a game in which, before the auction, each bidder n
can, by investing ¢, reduce the size of its item to s,, — A.

* Examples: Suppose there are N items, each of size 1 and the
knapsack has size N — 1, so a%"¢¢% (v,s) = {1, ...,N — 1}.

. 1
* Losses from excessive investment: If A = " and ¢ = vy — ¢,

then there is a Nash equilibrium in which all invest, even
though the cost is nearly N times the benefit.

* Can a uniform price mechanism perform similarly well?




Uniform-Price Greedy Mechanism

Determine the allocation

1. Order the items so that == > «-+ > -&_
S1 SN

2. Initializen < 1 and set §; « S.

3. Ifs, >S,,gotostep5

4. Increment n and go to step 3

5. Setad®(v,s) « {1,..,n— 1}

Set a supporting price (a “uniform” price of space)
Define p &£ v, /s, (the “pseudo-equilibrium” price of space)
Setp; « ﬁsj forjy=1,..,n—1,andp; « O0forj=mn,..,N.
8. End
* Define VA% (p,s) &'y

neaAlt(v,s) Vn-




Packing Efficiency and
Truthfulness

* Theorem. The “Alt” mechanism is truthful. Moreover,

yereedy(y,s) = VAL (v,s) = V*(v,s) — (S — S44)p.

The bound on efficiency loss is observable: it is equal to the
“value” of the unused space in the knapsack.




Investment Efficiency

* Suppose that each bidder n can, by expending c,, € C, determine the
size s, (cp,) of its item, where C is a finite set. Let n* denote the index
of the first bidder not packed by the Alt mechanism.

* Notation:

| 74— max z (Xpvp — Cy) S. t.z XnSp(cp) < S
{x,clcpx = =cy = 0} &=in n
¢, ¥ argmax max v,x, — ps,(c,) — ¢,
cn€C  *Xn
* Theorem. The combined loss from packing and investment in Alt is

(“observably”) bounded as follows:
Vv — VAL (s(c*)) < (S = SAlt(C*)) p




Greedy Algorithms and Auctions

* In an auction with single-minded bidders, a greedy algorithm
can be used to sort the bidders into two sets, winners and

losers.

LOS Algorithm and Related: Select winners by a greedy algorithm;
other bidders are losers.

DAA Algorithm and Related: Select losers by a greedy algorithm;
other bidders are winners.

* The two categories are economically distinct because
winners collect payments
losers do not

* The FCC descending clock auction is a DAA algorithm.
One could specify an ascending clock for an LOS-style algorithm. ( 75 J




How Well Does The Incentive Auction Work?

%

Can’t run VCG on national-scale problems: SonlineRg
can’t find an optimal packing NL_ZAF

Restrict attention to all stations within
two constraints of New York City

a very densely connected region
218 stations met this criterion

* Reverse auction simulator (UHF only)

* Simulation assumptions:
100% participation
126 MHz clearing target

valuations generated by sampling from a
prominent model due FCC chief
economist (before her FCC appointment)

1 min timeout given to SATFC




Cost / VCG Cost

Comparative Performance of Incentive
Auction Algorithms in Simulations
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More Greedy Algorithms

GREEDY ON MATROIDS




Matroid Terms Defined

Example: X is the set of rows of a finite matrix

Let R € g(X) be non-empty and all its elements
“independent sets.”

Example: all linearly independent sets of rows in X.

A “basis” is a maximal independent set.
Example: a maximal linearly independent set of rows of X.

The pair (X, R) (or just the set R) is a matroid if
[Free disposal] If ' € S € R,thenS' € R.

[Augmentation Property] Given §,S" € R, if |S| > |S’|, then
there existsn € S — S’ such that S’ U {n} € R.

Given a fine “ground set” X, let $o(X) denote its power set.

(2]




Greedy Algorithm

* Given any collection of independent sets R.
* Order the items so that v; > -+ > vy. (No volumes)

* Algorithm:
Initialize Sy < @.
Forn=1,..,N
S,_1U{n}ifS,,_;u{nter
Sn < .
Sn-1 otherwise
Next n

Output Sy.




Optimization on Matroids

* For simplicity, assume a unigue optimum.
* Theorem. If R is a matroid and Sy is the greedy solution, then

Sy = argmaxz U
SER nes

* Intuition. Suppose that S* = {iy, ..., iy} € R does not include
the most valuable item, which is item 1.
Then S§* is not optimal, because we can augment the set {1}

using items from S™ to create a k item set that is strictly more
valuable.

Notice that this means that if we have to choose between two [ 31 J
items, then the greedy has identical continuations after both.




Full Proof is by Induction




Matroids and Substitutes

* Let R be a non-empty collection of independent sets
satisfying free disposal.

* For each good in x € X, there is a buyer v(x) and a price
p(x). The buyer’s demand is described by:

V*(R,v) & maxixes(v(x) —p(x))

SER

d*(p|R,v) & argmaxz (v(x) — p(x))
SER XES

* Theorem. The items in X are substitutes if and only if R is a
matroid.

* Intuition: Raise the price of item x. When it becomes too
expensive and is “replaced by” some item y, the items chosen ( 33 J
before and after in the greedy algorithm are unaffected.




Proof Sketch

* Suppose that n € d*(p|R, v) and consider a price p'(n) > p(n)
such thatn € d*(p\p'(n)|R, v). Letn’ & d*(p|R, v) be the first
new item chosen instead during the greedy algorithm with prices
p\p'(n). Let the state of the greedy algorithm when it is chosen be
S'andletS =S"uU{n}—{n'}.

* By the augmentation property, the the feasible next choices to
augment S’ and S are identical. Hence, d(p\p'(n)|R, v)
= (d(p|R,v) — {n}) U {n'}, as required.

* Conversely, if R is not a matroid, then...




Necessity of Matroids

Theorem. If R is a non-empty family that satisfies free disposal but
not the augmentation property, then there is some vector of values

v such that (the greedy algorithm “fails”) Sy & argmax ., cq ;.
SER




Approximate Substitutes and the Incentive Auction

WHY SHOULD WE CARE?




The Substitution Index

* Why does the DA algorithm perform so well?

* Two conjectured reasons:
Special constraints: the independent sets C?

Special values: a set 0 € C where the optimum may lie?
“Zero knowledge case”: O = C.

* Definitions. Given the ground set X and the constraints C and

possible optimizers O that both satisfy free disposal,
XI
R*(C,0) ¥ argmax min maxu
R a matroid X€0 X'eR | X|
REC x'cx

|X']

C,0) = max . minmax-——-

,0( ) ) R amatroid XeO X'eR |X|
RCC Xx'cx




Approximation Theorem

- Given the ground set X, any S € P(X) and any v € RY,
define notation as follows:

V*(S;v “éfmaxz 7
X€eS$ nex

* Theorem. The greedy solution on R* approximates the
optimum in worst case as follows:
V(RS v)
min o - PO,




Proof Sketch, 1

° Let
v* € argmin V(R v) p* = VRS V)
o VO, v) V*(0; v*)
* Among optimal solutions, choose v* to be one with the
smallest number of strictly positive components.

* Without loss of optimality, we rescale v* so that the
smallest strictly positive component is 1.

* The next step will show that every component of v™ is
zero or one, so that the values of the two minimization
problems must exactly coincide.




Proof Sketch, 2

* Consider the family of potential minimizers U(a), where
Uy (a) & {

a ifv, =1
* R
v, otherwise

 Then, v* = §(1). The value of the objective for D(a) is
_ V*(R*; ﬁ(a)) . alX N Xpe| + Zne(X—)?)nXR* Un

CVH(0;0(@) X0 Xo| + Zeoe-pnx, Un

pa)

where
X déf {nlv,’: — 1}

Xpo € argmaxz Un
SEO nes

Xpx € argmaxz (7
SER* nes




Proof Sketch, 3

a|X 0 Xz | + Zneo-g)nxe. Vn

a|X 0 Xp| + Xnee-g)nx, Y

pla) =

For p(+) to achieve its minimum of p* when a = 1, it must be a
. . R XﬂX * * . %k o
constant function, which requires M = p~. Then, since v" is the
| XNXp| P

minimizer with the fewest strictly positive elements, {n|v,; > 1} =

D. m




The US Incentive Auction

WHAT IS GOING ON NOW?




Current Status

Incentive Auction Dashboard - Stage 2

‘ © Bidding in the clock phase of the reverse auction will begin September 13, 2016.

Clearing Target » 114 MHz

Licensed Spectrum 4 90 MHz

Final Stage Rule

1 | First Component 2 | Second Component © | Final Stage Rule
Auction Proceeds o Net Proceeds o
$15,896,290,987 $23,108,037,900 ’ ‘ $88,379,558,704 $22,450,000,000 ’ ‘ m

Target Actual Target Estimated As of Stage 1
Reverse Auction Forward Auction
Current Round » Bidding not started Current Round > Stage 1 concluded

Clearing Cost » N/A Auction Proceeds as of Stage 1 » $23,108,037,900




The Incentive Auction “Stages”:
A Conceptual Illustration
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Thank you!

END




