Lecture 1. Causal Inference in High-Dimensional Approximately Sparse Structural Linear Models

Victor Chernozhukov

MIT

September 6, 2016

 Richer data and methodological developments lead us to consider more elaborate econometric models than before.

- Richer data and methodological developments lead us to consider more elaborate econometric models than before.
- Focus discussion on the linear endogenous model

$$y_{i} = d_{i} \qquad \stackrel{\text{effect}}{=} + \sum_{j=1}^{p} x_{ij}\beta_{j} + \epsilon_{i}, \qquad (1)$$

$$\mathbb{E}[\epsilon_{i} | x_{i}, z_{i}] = 0.$$

$$\text{exogenous vars}$$

- Richer data and methodological developments lead us to consider more elaborate econometric models than before.
- Focus discussion on the linear endogenous model

$$y_{i} = d_{i} \qquad \stackrel{\text{effect}}{\underset{\text{controls}}{\text{treatment}}} + \sum_{j=1}^{p} x_{ij}\beta_{j} + \epsilon_{i} , \qquad (1)$$
$$\mathbb{E}[\epsilon_{i} | x_{i}, z_{i}] = 0.$$
$$\text{exogenous vars}$$

 Controls can be richer as more features become available (Census characteristics, housing characteristics, geography, text data)

⇐ "big" data

- Richer data and methodological developments lead us to consider more elaborate econometric models than before.
- Focus discussion on the linear endogenous model

$$y_{i} = d_{i} \qquad \stackrel{\text{effect}}{\underset{\text{controls}}{\text{treatment}}} + \sum_{j=1}^{p} x_{ij}\beta_{j} + \epsilon_{i} , \qquad (1)$$
$$\mathbb{E}[\epsilon_{i} | \qquad x_{i}, z_{i}] = 0.$$
$$\underset{\text{exogenous vars}}{\text{exogenous vars}}$$

 Controls can be richer as more features become available (Census characteristics, housing characteristics, geography, text data)

⇐ "big" data

 Controls can contain transformation of "raw" controls in an effort to make models more flexible

e nonparametric series modeling, "machine learning"

- This forces us to explicitly consider model selection to select controls that are "most relevant".
- Model selection techniques:
 - CLASSICAL: t and F tests
 - MODERN: Lasso, Regression Trees, Random Forests, Boosting

- This forces us to explicitly consider model selection to select controls that are "most relevant".
- Model selection techniques:
 - CLASSICAL: t and F tests
 - MODERN: Lasso, Regression Trees, Random Forests, Boosting

If you are using *any* of these MS techniques directly in (1), you are doing it *wrong.*

Have to do additional selection to make it right.

An Example: Effect of Institutions on the Wealth of Nations

- Acemoglu, Johnson, Robinson (2001)
- Impact of institutions on wealth

- Instrument z_i: the early settler mortality (200 years ago)
- Sample size n = 67
- Specification of controls:
 - Basic: constant, latitude (p=2)
 - Flexible: + cubic spline in latitude, continent dummies (p=16)

Example: The Effect of Institutions

	Institutions	
	Effect	Std. Err.
Basic Controls	.96**	0.21
Flexible Controls	.98	0.80

Is it ok to drop the additional controls?

Example: The Effect of Institutions

	Institutions	
	Effect	Std. Err.
Basic Controls	.96**	0.21
Flexible Controls	.98	0.80

Is it ok to drop the additional controls?

Potentially Dangerous.

Example: The Effect of Institutions

	Institutions	
	Effect	Std. Err.
Basic Controls	.96**	0.21
Flexible Controls	.98	0.80

Is it ok to drop the additional controls?

Potentially Dangerous. Very.

Analysis: things can go wrong even with p = 1

Consider a very simple exogenous model

$$y_i = d_i \alpha + x_i \beta + \epsilon_i, \quad \mathbb{E}[\epsilon_i \mid d_i, x_i] = 0.$$

- Common practice is to do the following.
- Post-single selection procedure:
- Step 1. Include x_i only if it is a significant predictor of y_i as judged by a conservative test (t-test, Lasso, etc.). Drop it otherwise.
- Step 2. Refit the model after selection, use standard confidence intervals.
 - ► This can fail miserably, if |β| is close to zero but not equal to zero, formally if

 $|\beta| \propto 1/\sqrt{n}$

What can go wrong? Distribution of $\sqrt{n}(\hat{\alpha} - \alpha)$ is not what you think

$$y_i = d_i \alpha + x_i \beta + \epsilon_i, \quad d_i = x_i \gamma + v_i$$

$$\alpha = \mathbf{0}, \quad \beta = .\mathbf{2}, \quad \gamma = .\mathbf{8},$$

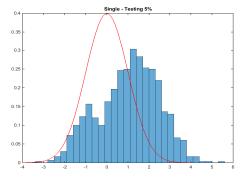
$$n = 100$$

$$\epsilon_i \sim N(0, 1)$$

$$(d_i, x_i) \sim N\left(0, \begin{bmatrix} 1 & .\mathbf{8} \\ .\mathbf{8} & 1 \end{bmatrix}\right)$$

$$\blacktriangleright \text{ selection done by a }$$

$$\mathbf{t}\text{-test}$$



Reject H_0 : $\alpha = 0$ (the truth) about 50% of the time (with nominal size of 5%)

What can go wrong? Distribution of $\sqrt{n}(\hat{\alpha} - \alpha)$ is not what you think

$$y_{i} = d_{i}\alpha + x_{i}\beta + \epsilon_{i}, \quad d_{i} = x_{i}\gamma + v_{i}$$

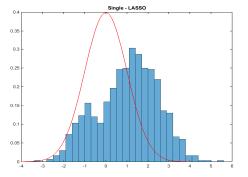
$$\alpha = \mathbf{0}, \quad \beta = .\mathbf{2}, \quad \gamma = .\mathbf{8}, \quad n = 100$$

$$\epsilon_{i} \sim N(0, 1)$$

$$(d_{i}, x_{i}) \sim N\left(0, \begin{bmatrix} 1 & .\mathbf{8} \\ .\mathbf{8} & 1 \end{bmatrix}\right)$$

$$\blacktriangleright \text{ selection done by }$$

$$Lasso$$



Reject $H_0: \alpha = 0$ (the truth) of no effect about 50% of the time

Solutions?

Pseudo-solutions:

- Practical: bootstrap (does not work),
- ► **Classical:** assume the problem away by assuming that either $\beta = 0$ or $|\beta| \gg 0$,
- Conservative: don't do selection

Solution: Post-double selection

Post-double selection procedure:

Step 1. Include x_i if it is a significant predictor of y_i as judged by a conservative test (t-test, Lasso etc).

- Step 2. Include x_i if it is a significant predictor of d_i as judged by a conservative test (t-test, Lasso etc). [In the IV models must include x_i if it a significant predictor of z_i].
- Step 3. Refit the model after selection, use standard confidence intervals.

Theorem

DS is theoretically valid in low-dimensional setting and in high-dimensional approximately sparse settings.

Refs: Belloni et al: WC ES 2010, ReStud 2013; Chernozhukov, Hansen, Spindler, ARE 2015.

Double Selection Works

$$y_i = d_i \alpha + x_i \beta + \epsilon_i, \quad d_i = x_i \gamma + v_i$$

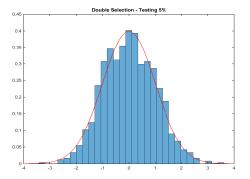
$$\alpha = \mathbf{0}, \quad \beta = .\mathbf{2}, \quad \gamma = .\mathbf{8},$$

$$n = 100$$

$$\epsilon_i \sim N(0, 1)$$

$$(d_i, x_i) \sim N\left(0, \begin{bmatrix} 1 & .\mathbf{8} \\ .\mathbf{8} & 1 \end{bmatrix}\right)$$

$$\blacktriangleright \text{ double selection done by t-tests}$$



Reject H_0 : $\alpha = 0$ (the truth) about 5% of the time (for nominal size = 5%)

Double Selection Works

$$y_i = d_i \alpha + x_i \beta + \epsilon_i, \quad d_i = x_i \gamma + v_i$$

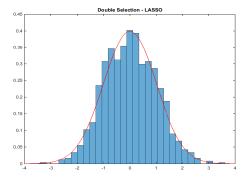
$$\alpha = \mathbf{0}, \quad \beta = .\mathbf{2}, \quad \gamma = .\mathbf{8},$$

$$n = 100$$

$$\epsilon_i \sim N(0, 1)$$

$$(d_i, x_i) \sim N\left(0, \begin{bmatrix} 1 & .\mathbf{8} \\ .\mathbf{8} & 1 \end{bmatrix}\right)$$

$$\blacktriangleright \text{ double selection done by Lasso}$$



Reject H_0 : $\alpha = 0$ (the truth) about 5% of the time (nominal size = 5%)

Intuition

- ► The Double Selection the selection among the controls x_i that predict *either* d_i or y_i creates this robustness. It finds controls whose omission would lead to a "large" omitted variable bias, and includes them in the regression.
- In essence the procedure is a model selection version of Frisch-Waugh-Lovell partialling-put procedure for estimating linear regression.
- The double selection method is robust to moderate selection mistakes in the two selection steps.

More Intuition via OMVB Analysis

Think about omitted variables bias:

$$y_i = \alpha d_i + \beta x_i + \zeta_i$$
; $d_i = \gamma x_i + v_i$

If we drop x_i , the short regression of y_i on d_i gives

$$\sqrt{n}(\widehat{\alpha} - \alpha) = \text{good term} + \sqrt{n} \underbrace{(\mathsf{D}'\mathsf{D}/n)^{-1}(\mathsf{X}'\mathsf{X}/n)(\gamma\beta)}_{\text{OMVB}}$$

the good term is asymptotically normal, and we want

$$\sqrt{n}\gamma\beta \rightarrow 0.$$

• single selection can drop x_i only if $\beta = O(\sqrt{1/n})$, but

$$\sqrt{n}\gamma\sqrt{1/n} \not\rightarrow 0$$

• **double selection** can drop x_i only if both $\beta = O(\sqrt{1/n})$ and $\gamma = O(\sqrt{1/n})$, that is, if

$$\sqrt{n}\gamma\beta = O(1/\sqrt{n}) \rightarrow 0.$$

Example: The Effect of Institutions, Continued

Going back to Acemoglu, Johnson, Robinson (2001):

Double Selection: include x_{ij}'s that are significant predictors of either y_i or d_i or z_i, as judged by Lasso. Drop otherwise.

	Intitutions	
	Effect	Std. Err.
Basic Controls	.96**	0.21
Flexible Controls	.98	0.80
Double Selection	.78**	0.19

Application: Effect of Abortion on Murder Rates in the U.S.

Estimate the consequences of abortion rates on crime in the U.S., Donohue and Levitt (2001)

$$\mathbf{y}_{it} = \alpha \mathbf{d}_{it} + \mathbf{x}'_{it}\beta + \zeta_{it}$$

- y_{it} = change in crime-rate in state *i* between *t* and *t* 1,
- d_{it} = change in the (lagged) abortion rate,
- 1. x_{it} = basic controls (time-varying confounding state-level factors, trends; p =20)
- 2. x_{it} = flexible controls (basic +state initial conditions + two-way interactions of all these variables)
- ▶ *p* = 251, *n* = 576

Effect of Abortion on Murder, continued

	Abortion on Murder	
Estimator	Effect	Std. Err.
Basic Controls	-0.204**	0.068
Flexible Controls	-0.321	1.109
Single Selection	- 0.202**	0.051
Double Selection	-0.166	0.216

 Double selection by Lasso: 8 controls selected, including state initial conditions and trends interacted with initial conditions

- This is sort of a negative result, unlike in AJR (2011)
- Double selection doest not always overturn results. Plenty of positive results confirming:
 - Barro and Lee's convergence results in cross-country growth rates;
 - Poterba et al results on positive impact of 401(k) on savings;
 - Acemoglu et al (2014) results on democracy causing growth;

High-Dimensional Prediction Problems

Generic prediction problem

$$u_i = \sum_{j=1}^{p} x_{ij}\pi_j + \zeta_i, \quad \mathbb{E}[\zeta_i \mid x_i] = 0, \quad i = 1, \ldots, n,$$

can have $p = p_n$ small, $p \propto n$, or even $p \gg n$.

- In the double selection procedure, u_i could be outcome y_i, treatment d_i, or instrument z_i. Need to find good predictors among x_{ij}'s.
- APPROXIMATE SPARSITY: after sorting, absolute values of coefficients decay fast enough:

$$|\pi|_{(j)} \le Aj^{-a}, \quad a > 1, j = 1, ..., p = p_n, \forall n$$

RESTRICTED ISOMETRY: small groups of x'_{ij}s are not close to being collinear.

Selection of Predictors by Lasso

Assuming $x'_{ij}s$ normalized to have the second empirical moment to 1.

Ideal (Akaike, Schwarz): minimize

$$\sum_{i=1}^n \left(u_i - \sum_{j=1}^p x_{ij} b_j \right)^2 + \lambda \left(\sum_{j=1}^p \mathbf{1} \{ b_j \neq 0 \} \right).$$

Lasso (Bickel, Ritov, Tsybakov, Annals, 2009): minimize

$$\sum_{i=1}^{n} \left(u_i - \sum_{j=1}^{p} x_{ij} b_j \right)^2 + \lambda \left(\sum_{j=1}^{p} |b_j| \right), \quad \lambda = \sqrt{\mathbb{E}\zeta^2} 2\sqrt{2nlog(pn)}$$

Selection of Predictors by Lasso

Assuming $x'_{ij}s$ normalized to have the second empirical moment to 1.

Ideal (Akaike, Schwarz): minimize

$$\sum_{i=1}^n \left(u_i - \sum_{j=1}^p x_{ij} b_j \right)^2 + \lambda \left(\sum_{j=1}^p \mathbf{1} \{ b_j \neq 0 \} \right).$$

Lasso (Bickel, Ritov, Tsybakov, Annals, 2009): minimize

$$\sum_{i=1}^{n} \left(u_i - \sum_{j=1}^{p} x_{ij} b_j \right)^2 + \lambda \left(\sum_{j=1}^{p} |b_j| \right), \quad \lambda = \sqrt{\mathbb{E}\zeta^2} 2\sqrt{2nlog(pn)}$$

Root Lasso (Belloni, Chernozhukov, Wang, Biometrika, 2011): minimize

$$\sqrt{\sum_{i=1}^{n} \left(u_i - \sum_{j=1}^{p} x_{ij} b_j\right)^2} + \lambda \left(\sum_{j=1}^{p} |b_j|\right), \quad \lambda = \sqrt{2n\log(pn)}$$

Lasso provides high-quality model selection

Theorem

Under approximate sparsity and restricted isometry conditions, Lasso and Root-Lasso find parsimonious models of approximately optimal size

$$s = n^{\frac{1}{2a}}$$
.

Using these models, the OLS can approximate the regression functions at the nearly optimal rates in the root mean square error:

$$\sqrt{\frac{s}{n}\log(pn)}$$

This is also the rate at which Lasso approximates the regression functions.

- Ref (Lasso): Bickel, Ritov, Tsybakov (Annals 2010)
- Ref (Post-Lasso, Root-Lasso): Belloni and Cherozhukov: Bernoulli, 2013, Belloni et al , Annals, 2014)

Double Selection in Approximately Sparse Regression

Exogenous model

$$y_i = d_i \alpha + \sum_{j=1}^p x_{ij} \beta_j + \zeta_i, \quad \mathbb{E}[\zeta_i \mid d_i, x_i] = 0, \quad i = 1, \dots, n,$$

$$d_i = \sum_{j=1}^{\nu} x_{ij}\gamma_j + \nu_i, \quad \mathbb{E}[\nu_i \mid x_i] = 0, \quad i = 1, \ldots, n,$$

can have *p* small, $p \propto n$, or even $p \gg n$.

n

 APPROXIMATE SPARSITY: after sorting absolute values of coefficients decay fast enough:

$$|\beta|_{(j)} \le Aj^{-a}, \quad a > 1, \quad |\gamma|_{(j)} \le Aj^{-a}, \quad a > 1.$$

 RESTRICTED ISOMETRY: small groups of x'_{ij}s are not close to being collinear.

Double Selection Procedure

Post-double selection procedure

- Step 1. Include x_{ij} 's that are significant predictors of y_i as judged by LASSO or OTHER high-quality selection procedure.
- Step 2. Include x_{ij} 's that are significant predictors of d_i as judged by LASSO or OTHER high-quality selection procedures.
- Step 3. Refit the model by least squares after selection, use standard confidence intervals.
- Ref: Belloni et al, 2010, ES World Congress, ReStud 2013

Double Selection Procedure 2

A closely related procedure is the following:

- Double partialling out by Lasso/Post-Lasso procedure:
- Step 1. Partial out from y_i the effect of all x_{ij} 's that are significant predictors of y_i as judged by LASSO or OTHER high-quality selection procedure. Obtain the residual \tilde{y}_i .
- Step 2. Partial out from d_i the effect of all x_{ij} 's that are significant predictors of d_i as judged by LASSO or OTHER high-quality selection procedure. Obtain the residual \tilde{d}_i .
- Step 3. Regress \tilde{y}_i on \tilde{d}_i using least squares, use standard confidence intervals.
- Ref: Chernozhukov, Hansen, Spindler, 2015, Annual Review of Economics; Belloni et al, Annals of Stats, 2014.

Uniform Validity of the Double Selection/Partialling Out for Regression

Theorem

Uniformly within a class of approximately sparse models with restricted isometry conditions

$$\sigma_n^{-1}\sqrt{n}(\check{\alpha}-\alpha_0)\to_d N(0,1),$$

where σ_n^2 is conventional variance formula for least squares. Under homoscedasticity, semi-parametrically efficient.

- Model selection mistakes are asymptotically negligible due to double selection.
- Ref: Belloni et al, WC 2010, ReStud 2013; Belloni et al, Annals of Stats, 2014

Double Selection for IV Regression

- Post-double selection procedure (Belloni et al 2014, JEP):
- Step 1. Include x_{ij} 's that are significant predictors of y_i as judged by LASSO or OTHER high-quality selection procedure.
- Step 2. Include x_{ij} 's that are significant predictors of either d_i or z_i as judged by LASSO or OTHER high-quality selection procedures.
- Step 3. Refit the model by two-stage least squares (or other IV estimator) after selection, use standard confidence intervals.

Double Partialling Out for IV Model

A closely related procedure is the following:

- Partialling out with double selection procedure:
- **Step 1.** Partial out from y_i the effect of all x_{ij} 's that are significant predictors of y_i using LASSO, Post-LASSO or OTHER high-quality regularization procedure. Obtain the residual \tilde{y}_i .
- **Step 2.** Partial out from d_i the effect of all x_{ij} 's that are significant predictors of d_i as judged by LASSO or OTHER high-quality selection procedure. Obtain the residual \tilde{d}_i . Partial out from z_i the effect of all x_{ij} 's that are significant predictors of z_i as judged by LASSO or OTHER high-quality selection procedure. Obtain the residual \tilde{z}_i .
- Step 3. Run IV regression of \tilde{y}_i on \tilde{d}_i using \tilde{z}_i the instrument, use standard confidence intervals.
- Ref. Chernozhukov, Hansen, Spindler, 2015, Annual Review of Economics.

Monte Carlo Confirmation

• In this simulation we used: p = 200, n = 100, $\alpha_0 = .5$

$$y_i = d_i \alpha + x'_i \beta + \zeta_i, \ \zeta_i \sim N(0, 1)$$

$$d_i = x'_i \gamma + v_i, \ v_i \sim N(0, 1)$$

approximately sparse model:

$$|\beta_j| \propto 1/j^2, |\gamma_j| \propto 1/j^2$$

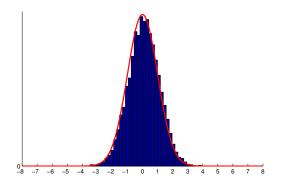
• $R^2 = .5$ in each equation

regressors are correlated Gaussians:

$$x \sim N(0, \Sigma), \ \ \Sigma_{kj} = (0.5)^{|j-k|}.$$

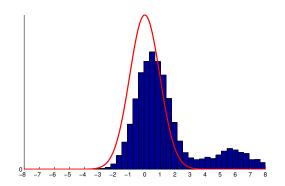
Distribution of Post Double Selection Estimator

p = 200, *n* = 100



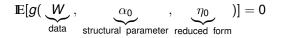
Distribution of Post-Single Selection Estimator

p = 200 and *n* = 100



Generalization: Orthogonalized or "Doubly Robust" Moment Equations

- Goal:
 - inference on structural parameter α (e.g., elasticity)
 - having done Lasso & other ML fitting of reduced forms $\eta(\cdot)$
- Use orthogonalization methods to remove biases. This often amounts to solving auxiliary prediction problems.
- In a nutshell, we want to set up moment conditions

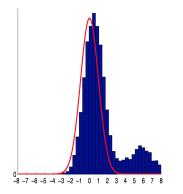


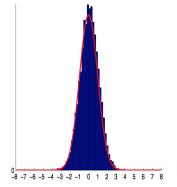
such that the orthogonality conditions hold:

$$\partial_{\eta} \mathbb{E}[g(W, \alpha_0, \eta)]\Big|_{\eta=\eta_0} = 0$$

See: Chernozhukov, Hansen, Spindler, AER, 2015

Inference on Structural/Treatment Parameters





Without Orthogonalization

With Orhogonalization

Conclusion

- It is time to address model selection
- Mostly dangerous: naive (post-single) selection does not work
- Double selection works
- More generally, the key is to use orthogonolized moment conditions for inference