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2.  Will we get there in time!?




“Mission Innovation” pledged to double clean energy
R&D spend, although Trump is unlikely to do this
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Each of the 20 participating countries will seek to double its governmental and/or state-
directed clean energy research and development investment over five years.

New investments will be focused on transformational clean energy technology
innovations that can be scaled to varying economic and energy market conditions that
exist in participating countries and in the broader world.



http://mission-innovation.net/countries/

Overall, energy R&D has been relatively flat for a
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time, but will rise with Ml (even without US)
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Efficiency and tech progress means the price for
many energy services (e.g. lighting) has collapsed
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Price for lighting in the UK from 1300 to today
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Consumption of energy services (e.g. lighting) has
rocketed since 1700. Satiation points!?
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De we have enough energy to go around, and to S@
keep creating order from chaos!? -

Fossil fuels
Global reserves/resources

Natural gas
PE=~60.400EJ
TU=~12.000EJ
Crude oil
Coal PE = ~23.000 EJ
PE =~135.00 EJ TU =~9.800 EJ

Qo.

Notes: PE—Potential energy; TU—Technologically utilizable: 1 EJ =1 exajoule or 10'® joules or about 163 million barrels of oil

Source: Ferric et al (2013) 8
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Solar PV (unlike solar thermal) is an entirely new

S
way of generating electricity — no turbines required
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Solar efficiencies continue to rise, reducing costs

S

(including balance of plant per Watt)
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https://youtu.be/35CVojgRgfs
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Several different university teams are working on S@&
spray on solar (semiconductor nanocrystals) :
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Solar tiles may not be too far around the corner — S@
costs are reputed to be falling... -



https://www.theguardian.com/environment/2016/oct/29/tesla-boss-elon-musk-unveils-solar-roof-tiles
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Innovations in solar are promising, including some out
of Oxford labs B i

Source: Rob Lavinsky, iRocks.com

Credit: Oxford Martin School




Much of this is based around new materials science - BB
to make better practical use of solar physics ST

* Perovskites (CaTiO;)
— High conductivity
— Increasing efficiency
— Simple processing

* Graphene (C)
o High conductivity
o Very thin

o Flexible

Graphene

N
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Viewed over the long run, the price collapse is
genuinely remarkable compared to power from coal
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A clean, cheap, and unlimited supply of energy is no T e

longer entirely infeasible <

Source: Jaguar Plant in the United Kingdom




The rate of decline in battery costs has surprised

official agencies such as the CCC
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Cheap renewables has thus far hammered incumbent
utilities in Germany
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Share price performance of German utility companies
20%
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Similarly, betting on incumbent car manufactures has not s@sﬁ
paid compared with backing the disruptive entrant -
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Tesla's market cap overtakes Ford's
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EVs and AVs represent a potential revolution in
personal transport e o

* Cars currently parked > 90% of the time

* Could be driver > 90% of the time

* Some estimates 80% fewer car parking places required
* Cost of ownership 90% lower

* Impact on demand...!

Source: 21



And if they take off, electric vehicles could have
serious implications for oil and power respectively

* Oil demand is heavily transport dependent
* Hybrids and gas as a transition

e Batteries, infrastructures and all-electric vehicles

LL 29



How quickly will the dominoes fall? A e

Jaguar Land Rover to make only electric
Bl or hybrid cars from 2020

Cc

B Carmaker follows Volvo in spelling an end for petrol or diesel-only cars, despite

offe Ot making any electric vehicles at present

ents

23
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Energy per capita varies from 20 G) to > 200 G]J p. a. s%&
ETC argues that 100 GJ is needed for a good life

OXFORD

Current energy per capita varies significantly across the world

- -

229

Source: Energy Transition Commission (2017) Better Energy, Greater Prosperity
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Globally, energy is still primarily fossil fuels %

Industry
‘ Transformation®
4 (fossil fuels)
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Transport
Natural J Losses and
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Source: IEA (2012) World Energy Outlook, Figure 2.8 26



The oil majors and the |IEA suggest that change is S@&
unlikely to come quickly AR
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Source: BP (2016) World Energy Outlook, Figure 2.8 27
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Historically, energy transitions have happened slowly, S@
each one taking many decades |
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Source: IAEA 28



Past ‘evidence’ therefore appears to back up the view
that such rapid change is very unlikely, but...
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ENERGY-TECHNOLOGY DEPLOYMENT
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Source: Kramer and Haigh (2009, Nature) No quick switch to low-carbon energy 29



The big guys already have an impressive track
record in getting it wrong on solar
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Global capacity of Solar PV installed, GW
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Transitions can be fast: New York went rapidly from S@

the horse (1900) to the car (1913)
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Others (e.g. Smil) note energy sector transitions are
always slow, because of e.g. long lived capital
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The Arc of Energy History, 1840 - 2012
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Could this time be different?
Solar growth rates are historically unprecedented

Growth after a fuel reached 10 mtoe (million tonnes of oil equivalent)
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Sources: BP, Smil, TSRP estimates.

Source: Kingsmill Bond, see https://www.carboncommentary.com/blog/2016/1 1/17/the-time-needed-for-energy-transitions#_ftn|5= 33



Finance will be important because the new energy
world is more capital than fuel
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So financing is more important than ever — next session!
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Much depends upon how rapidly, and how, countries S%“iﬁm
electrify across Africa and South Asia

FIGURE 5 Access to electricity, 2014

High-impact countries
Under 10%

From 10% up to 50%
From 50% up to 100%
100%

| NONONONC)

Source: SE4All (2017) 35



It also depends on urban design (emissions are 6x in
Atlanta cf Barcelona)
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Atlanta Barcelona
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Source: LSE Cities, 2014 36



And if all else fails, we can try geoengineering
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Whether we will transform our economy in time depends upon:

2.

Can we accelerate the pace of technological change? (Very likely)
Can we integrate new tech into systems fast enough? (Likely)
Will we urbanise in a sensible way? (Maybe)

Will the finance be available? (Likely)

Will the climate be kind to us? (We are rolling the dice...)

Source: SE4AIl (2017) 38
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Thank you
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