### **ETH** zürich



# Energy efficiency in the residential sector

### Prof. Massimo Filippini

Pasargad Summer School 2017



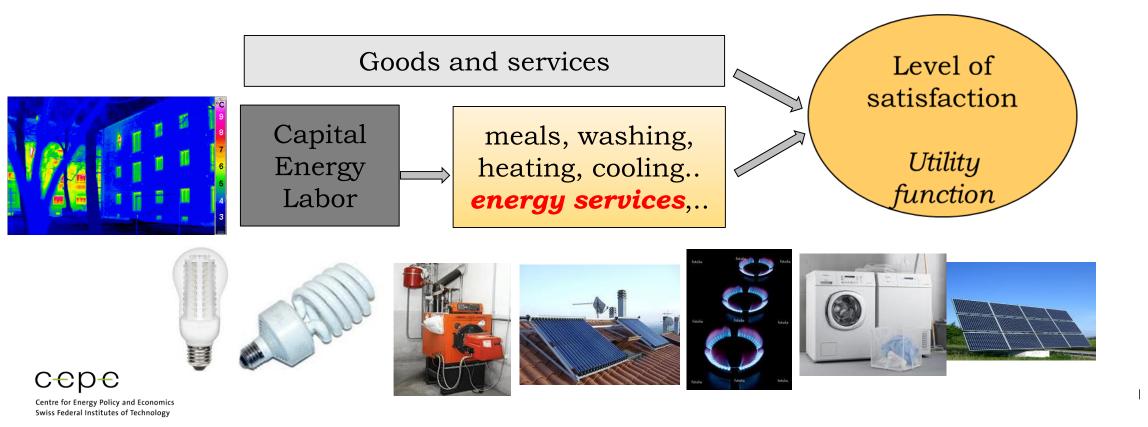
# Content

## A. Definition

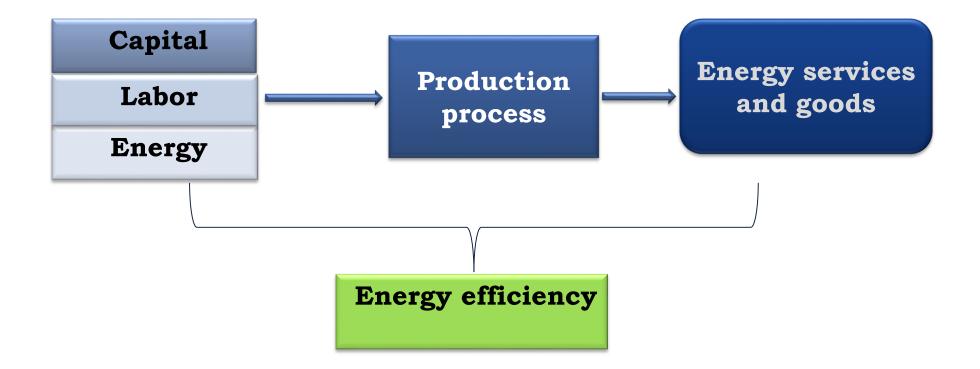
### B. Measurement

C. Empirical Study




1

- Residential demand for energy is a demand derived from the demand for a warm house, cooked food, hot water, etc.,
- Residential demand for energy can be specified using the basic framework of household production theory.




# Household production theory

 According to this theory, households purchase "goods" in the market which serve as inputs that are used in production processes, to produce the "energy services" which appear as arguments in the household's utility function.



**Energy efficiency and productive efficiency** 



# **Energy services**

• The production of energy services implies a choice of

Standard technology or
Show technology

- It implies an investment in durables
- The decision depends on several factors (relative prices, expected prices, discount rate,...behavioural factors, policy measures,..)



# Inefficiency in the use of energy (waste of energy) may be due to



- low adoption of new energyefficient technologies (energy efficiency gap) (3)
- Use of obsolete technologies



- Inefficient combination of capital and energy (1)
- Inefficient use of electrical appliances / heating system (2)



Do ONE THING: Don't leave appliances on standby

Market and behavioral failures

Ceepe Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# Bounded rationality (low investment literacy)

### Energy Economics 52 (2015) S5-S16



### Measurement of energy efficiency based on economic foundations



Massimo Filippini <sup>a,b,\*</sup>, Lester C. Hunt <sup>c,d</sup>

<sup>a</sup> Centre for Energy Policy and Economics (CEPE), ETH Zurich, Switzerland

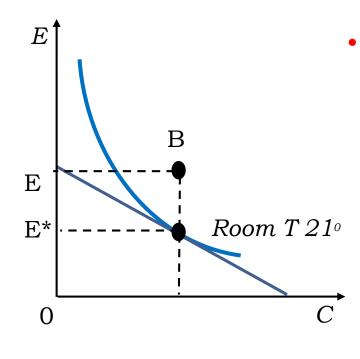
<sup>b</sup> Department of Economics, Università della Svizzera Italiana, Switzerland

<sup>c</sup> Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey, UK

<sup>d</sup> King Abdullah Petroleum Studies and Research Center (KAPSARC), Riyadh, Saudi Arabia

#### ARTICLE INFO

### ABSTRACT


| JEL Clas | sification:                          |
|----------|--------------------------------------|
| D        |                                      |
| D2       |                                      |
| Q        |                                      |
| Q4       |                                      |
| Q5       |                                      |
| Varnason | der                                  |
| Keywor   |                                      |
| Econon   | nic foundations of energy efficiency |
| Energy   | demand                               |
| Stochas  | tic frontier analysis                |

Energy efficiency policy is seen as a very important activity by almost all policy makers. In practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is energy intensity. However, this simple indicator is not necessarily an accurate measure given changes in energy intensity are a function of changes in several factors as well as 'true' energy efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy intensity measures. Related to this, some published academic papers over the last few years have attempted to use empirical methods to measure the efficient use of energy based on the economic theory of production. However, these studies do not generally provide a systematic discussion of the theoretical basis nor the possible parametric empirical approaches that are available for estimating the level of energy efficiency. The objective of this paper, therefore, is to sketch out and explain from an economic perspective the theoretical framework as well as the empirical methods for measuring the level of energy efficiency. Additionally, in the second part of the paper, some of the empirical studies that have attempted to measure energy efficiency using such an economics approach are summarized and discussed.

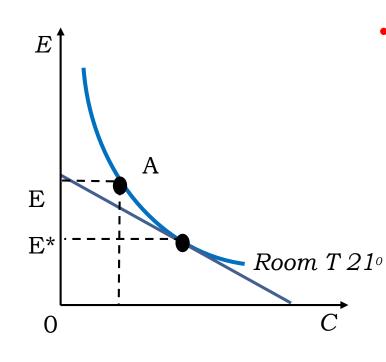
© 2015 Elsevier B.V. All rights reserved.

# Inefficiency in the use of energy

Microeconomics approach



**Situation 1:** Household **A** is using in an inefficient way an appliance or an heating system


**Behavior**: a household could optimise the amount of time that windows are opened during the day; optimises the use of a cooling/heating system (temperature); turn off the lights,...



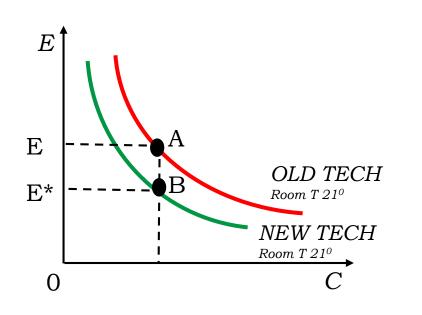


# Inefficiency in the use of energy

Microeconomics approach



**Situation 2:** Household **A** is using in an inefficient way the inputs (capital and energy)


## Substitution of energy with capital:

installing a device on a cooling system to improve the function of the system; substitution of the windows; insulation of the building



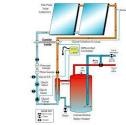
# Inefficiency in the use of energy

Microeconomics approach



 Situation 3: Household is using an old technology → inefficient use of the inputs (capital and/or energy) →Energy efficiency gap

## Adoption of a new


*technology*: new building technology; more efficient appliances













- **Example: New technology**: Low-energy-consumption building
- High insulation
- Continuous renewal of air in the building using an energy-efficient ventilation system
- Sources Partially Renewable energy sources
- 🏷 Design
- Better comfort (homogeneous distribution of the temperature,indoor air quality,...
- Swiss Label: MINERGIE

# Content

A. Definition

### **B.** Measurement

C. Empirical Study



1

# **Measurement of energy efficiency**

Possible approaches

Partial indicators

₿Bottom up engineering approach

**b** Econometric and linear programming approaches



# **Partial indicators**

• **Simple ratio of output to energy consumption** (output and inputs measured in physical and or economic units; energy/thermodynamic units,).

Energy intensity (Energy consumption/GDP; energy consumption per square meter;...)

## Senergy productivity (inverse of energy intensity)

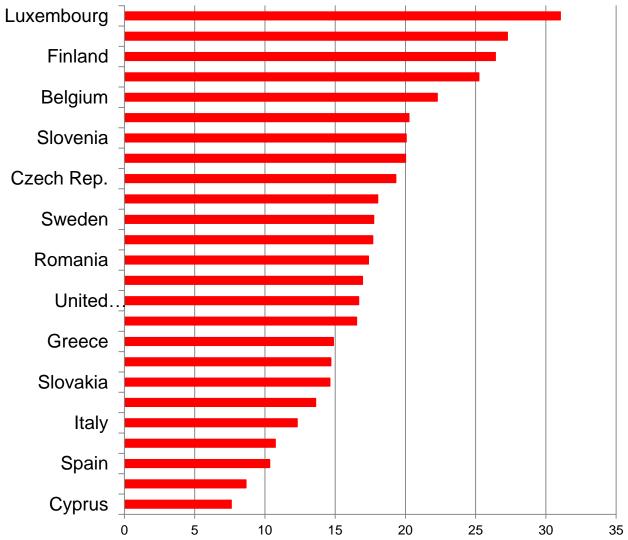


International Energy Agency Sustainable Together

2016

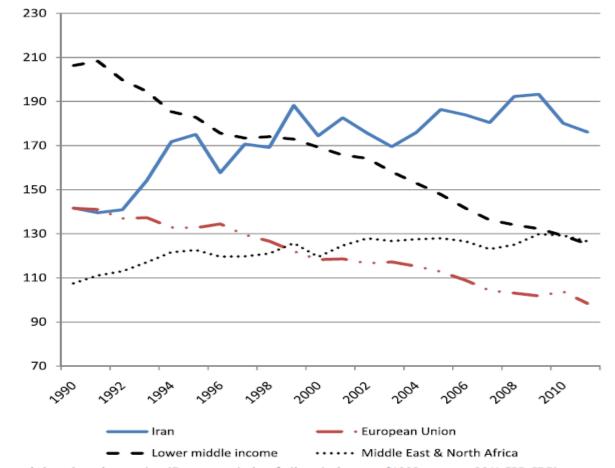





|                               |                                       |                                             |                                         |                                                           |                                                              |                                                                |                                                                      | - 1                            |
|-------------------------------|---------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------|
| TPES/<br>pop.<br>(toe/capita) | TPES/<br>GDP<br>(toe/000<br>2010 USD) | TPES/<br>GDP (PPP)<br>(toe/000<br>2010 USD) | Elec.<br>cons./pop.<br>(kWh/<br>capita) | CO <sub>2</sub> /<br>TPES<br>(t CO <sub>2</sub> /<br>toe) | CO <sub>2</sub> /<br>pop.<br>(t CO <sub>2</sub> /<br>capita) | CO <sub>2</sub> /<br>GDP<br>(kg CO <sub>2</sub> /<br>2010 USD) | CO <sub>2</sub> /<br>GDP (PPP)<br>(kg CO <sub>2</sub> /<br>2010 USD) | Region/<br>Country/<br>Economy |
| 0.34                          | 0.20                                  | 0.09                                        | 357                                     | 1.45                                                      | 0.49                                                         | 0.29                                                           | 0.13                                                                 | Ghana                          |
| 5.94                          | 0.17                                  | 0.20                                        | 5818                                    | 2.74                                                      | 16.25                                                        | 0.47                                                           | 0.55                                                                 | Gibraltar                      |
| 2.12                          | 0.09                                  | 0.09                                        | 5047                                    | 2.85                                                      | 6.03                                                         | 0.27                                                           | 0.25                                                                 | Greece                         |
| 0.83                          | 0.28                                  | 0.12                                        | 575                                     | 1.22                                                      | 1.01                                                         | 0.34                                                           | 0.14                                                                 | Guatemala                      |
| 0.39                          | 0.54                                  | 0.24                                        | 39                                      | 0.67                                                      | 0.26                                                         | 0.36                                                           | 0.16                                                                 | Haiti                          |
| 0.67                          | 0.30                                  | 0.15                                        | 697                                     | 1.63                                                      | 1.10                                                         | 0.48                                                           | 0.24                                                                 | Honduras                       |
| 1.97                          | 0.06                                  | 0.04                                        | 6073                                    | 3.37                                                      | 6.62                                                         | 0.19                                                           | 0.13                                                                 | Hong Kong, China               |
| 2.31                          | 0.17                                  | 0.10                                        | 3966                                    | 1.76                                                      | 4.08                                                         | 0.29                                                           | 0.18                                                                 | Hungary                        |
| 17.94                         | 0.41                                  | 0.44                                        | 53896                                   | 0.35                                                      | 6.25                                                         | 0.14                                                           | 0.15                                                                 | Iceland                        |
| 0.64                          | 0.38                                  | 0.12                                        | 805                                     | 2.45                                                      | 1.56                                                         | 0.92                                                           | 0.29                                                                 | India                          |
| 0.89                          | 0.24                                  | 0.09                                        | 814                                     | 1.94                                                      | 1.72                                                         | 0.46                                                           | 0.17                                                                 | Indonesia                      |
| 3.03                          | 0.51                                  | 0.19                                        | 2996                                    | 2.35                                                      | 7.12                                                         | 1.20                                                           | 0.44                                                                 | Islamic Rep. of Iran           |
| 1.42                          | 0.28                                  | 0.10                                        | 1313                                    | 2.85                                                      | 4.05                                                         | 0.80                                                           | 0.29                                                                 | Iraq                           |
| 2.77                          | 0.05                                  | 0.06                                        | 5725                                    | 2.65                                                      | 7.34                                                         | 0.14                                                           | 0.16                                                                 | Ireland                        |
| 2.76                          | 0.08                                  | 0.09                                        | 6604                                    | 2.85                                                      | 7.88                                                         | 0.24                                                           | 0.26                                                                 | Israel                         |
| 2.41                          | 0.07                                  | 0.07                                        | 5002                                    | 2.18                                                      | 5.26                                                         | 0.16                                                           | 0.16                                                                 | Italy                          |

Е

n


### ETHzürich

# Residential energy consumption (Kwh) per square meters (2011)



Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# **Energy intensity in Iran**



S. Moshiri / Energy Policy 79 (2015) 177-188

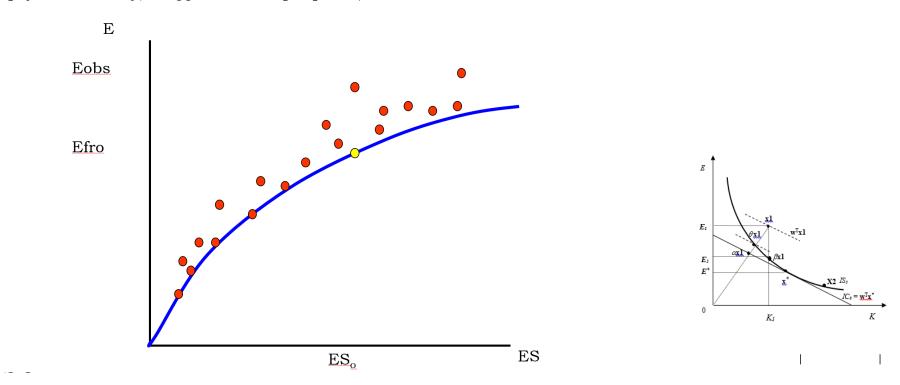
Fig. 1. Energy intensity in Iran and the selected countries. (Energy use in kg of oil equivalent per \$1000 constant 2011 PPP GDP). Source: Word Devlopmet Indicators (2013).

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# **Problems of this indicator**

PROGRESS WITH IMPLEMENTING ENERGY EFFICIENCY POLICIES IN THE G8

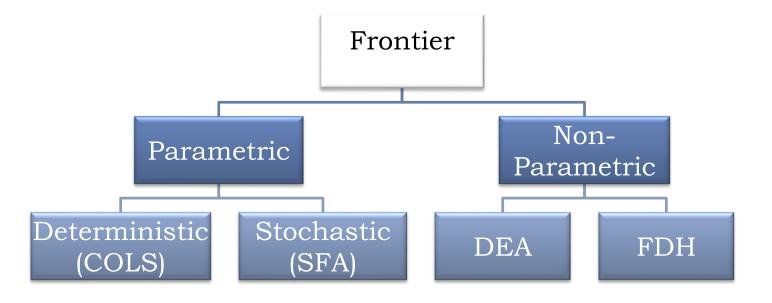



"Energy intensity is commonly calculated as the ratio of energy use to GDP. Energy intensity is often taken as a proxy for energy efficiency, although this is not entirely
accurate since changes in energy intensity are a function of changes in several factors including the structure of the economy, climate,... and energy efficiency"

 Energy intensity can vary between countries for several reasons

Swiss Federal Institutes of Technology

# Econometric and linear programming approaches


- The level of efficiency on the use of energy is based on the estimation of frontier functions.
- A frontier function gives the maximal or minimal level of an economic indicator attainable by an economic agent.



simplified model E=f(energy services, input prices)

# **Two approaches**

- In the literature we can distinguish two principal types of approaches to measure efficiency
- the econometric (parametric) approach and
- the *linear programming (non-parametric)* approach



# **Two approaches**

- Both approaches *econometric* and *linear programming* have their own advocates. <u>At least in the scientific community neither one has emerged</u> <u>as dominant</u>.
- <u>I will concentrate on the parametric SFA (</u>Unobserved heterogeneity and panel data)



## Journal of Productivity Analysis

Editor-in-Chief: William H. Greene Editor: C. O'Donnell; V. Podinovski

ISSN: 0895-562X (print version) ISSN: 1573-0441 (electronic version)

Journal no. 11123



# **Three frontier functions**

• The actual empirical studies that estimate the level of efficiency in the use of energy are generally based on the estimation of three frontier functions:

san input requirement function (Boyd, 2008);

♦ a Shephard energy distance function (Zhou et al., 2012);

SAn energy demand frontier function (Filippini and Hunt, 2011).



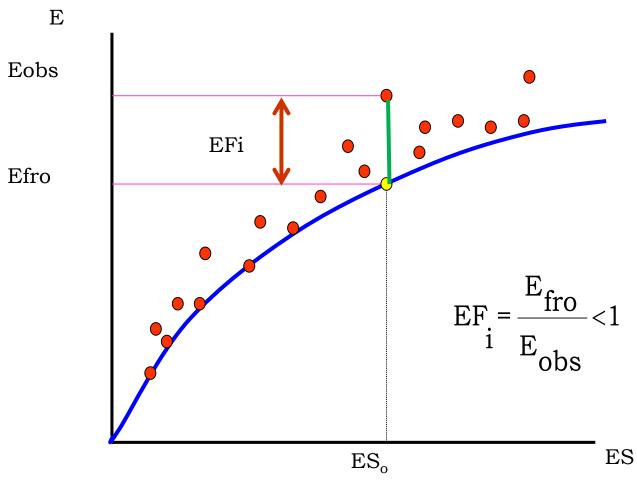
# Residential energy demand model (input demand functionbased on household production theory)

 $x_{E} = f(p_{E}, p_{C}, p_{OG}, Y, ES1, ES2, ..., ..)$ 

$$\ln x_{E} = \alpha_{0} + \alpha_{p_{E}} \ln p_{E} + \alpha_{p_{G}} \ln p_{G} + \alpha_{Y} \ln Y + \alpha_{ES1} \ln ES1 + \alpha_{ES2} \ln ES2 + ... + \varepsilon$$

usually the amount of energy services is not observed

 $\mathbf{x}_{\mathrm{E}} = f(\mathbf{p}_{\mathrm{E}}, \mathbf{p}_{C}, \mathbf{p}_{OG}, Y, HS, SM, Age, Children, ..., ..)$ 


# Methodology: an energy demand frontier model

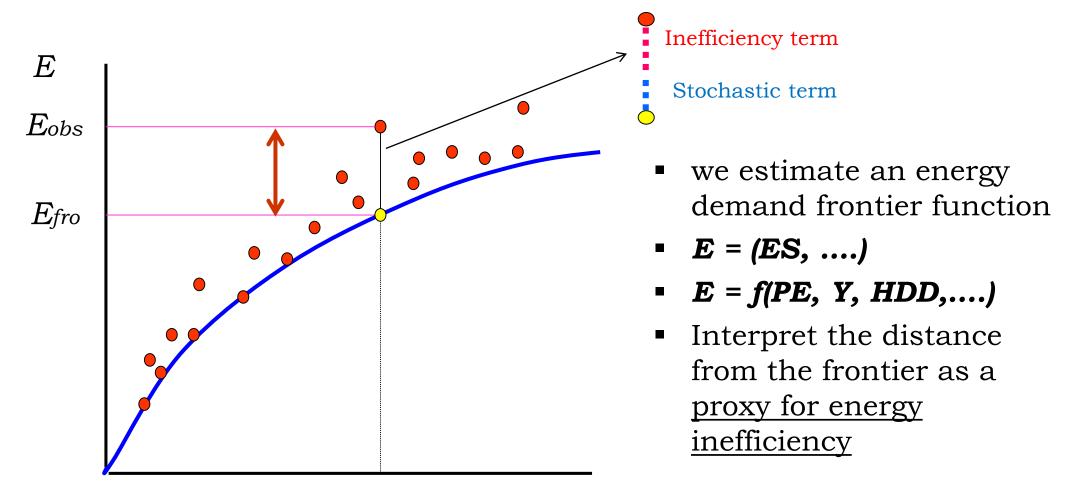
- In the case of an energy demand function the frontier gives the minimum level of energy necessary for an economy/household/firm to produce any given level of goods and services / energy services.
- The distance from the frontier measures the level of energy consumption above the baseline demand, e.g. the level of energy inefficiency.



# An energy demand frontier model

simplified model E=f(energy services, input prices)




Energy efficiency

measures the ability of an household to minimize the energy consumption, given a level of energy services

Estimation an energy demand frontier equation



# Stocastic frontier energy demand model





# Stocastic frontier model using cross-sectional data

 $Ln E_i = \alpha + \alpha_y \ln Y_i + \dots + v_i + u_i$ 

a symmetric disturbance capturing the effect of noise and as usual is assumed to be normally distributed

 $v_i \sim N[0,\sigma_v^2]$ 

 $u_i \geq 0$ 

is interpreted as an indicator of energy efficiency and is assumed to be half-normal distributed

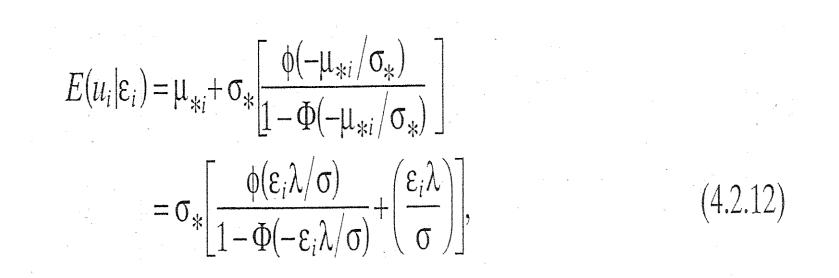
$$u_i = |U_i|, U_i \sim N[0, \sigma_u^2]$$

## **Residential energy demand**

# Data collected trough a survey (cross-section)

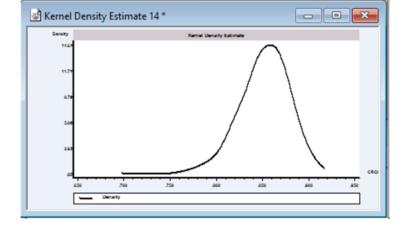
|   | А       | В      | С    | D     | E  |            | F      | G   | Н | 1    |     | J   | Κ | L  |    | Μ   | Ν      | 0     | Р     | Q      | R       | S |
|---|---------|--------|------|-------|----|------------|--------|-----|---|------|-----|-----|---|----|----|-----|--------|-------|-------|--------|---------|---|
| 1 | cust_id | city   | year | EL    | PE | GAS        | S F    | PG  |   | MILK | PM  |     |   | HS | SM |     | INC    | dishw | washm | hdd    | cdd     |   |
| 2 | 1       | Lugano | 2010 | 1292  | 2  | 20         | 28000  | 6.7 |   |      | 40  | 1.8 |   |    | 1  | 100 | 70000  | (     | 0     | 1 3602 | 2 133.3 | 3 |
| 3 | 2       | Zurich | 2010 | 17742 | 2  | 18         |        |     |   | :    | 200 | 2   |   |    | 5  | 180 | 150000 | :     | 1     | 0 400  | 0 100   | C |
| 4 | 3       | Lugano | 2010 | 1912  | 2  | 20 4       | 0104.1 | 6.7 |   |      | 29  | 1.8 |   |    | 2  | 90  | 110000 | (     | 0     | 0 3602 | 2 133.3 | 3 |
| 5 | 4       | Bern   | 2010 | 2162  | 2  | 16         |        |     |   |      | 56  | 2   |   |    | 2  | 60  | 80000  | :     | 1     | 0 410  | 0 96    | 5 |
| 6 | 1       | 1      | 2011 | 140   | 1  | <b>h</b> 1 | 20000  | 7 4 |   |      | 40  | 10  |   |    | 1  | 100 | 70000  |       | ^     | 1 2055 | 1 1100  | - |

E=f(PE,PG,HS,SM,INC,DISHW,WASHM,DRYER)




| Depender<br>Log lika<br>Estimat:<br>Inf.Cr.J<br>Variance<br>Sigma =<br>Gamma =<br>Var[u]/ | <pre>Half Normal Stoch.<br/>ht variable<br/>elihood function<br/>ion based on N =<br/>AIC = 758.2 AI<br/>es: Sigma-squared(<br/>Sigma(v)<br/>Sigma-squared(<br/>Sigma(u)<br/>Sqr[(s^2(u)+s^2(v<br/>sigma(u)^2/sigma^<br/>{Var[u]+Var[v]}<br/>cic Cost Frontier</pre> | LN<br>-369.120<br>535, K =<br>C/N = 1.4<br>v) = .217<br>= .466<br>u) = .040<br>= .201<br>)] = .508<br>2 = .156<br>= .063 | I_E<br>067<br>10<br>117<br>796<br>586<br>059<br>47<br>348<br>599<br>338 |                 |               |                   |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|---------------|-------------------|--|
| <br>LN_1                                                                                  | <br> <br>E  Coefficient                                                                                                                                                                                                                                              | Standard<br>Error                                                                                                        |                                                                         | Prob.<br> z >Z* | 95% Co<br>Int | nfidence<br>erval |  |
|                                                                                           | Deterministic Co                                                                                                                                                                                                                                                     | mponent of S                                                                                                             | Stochasti                                                               | c Fronti        | er Model      |                   |  |
| Constant                                                                                  | 12.9747***                                                                                                                                                                                                                                                           | .80607                                                                                                                   | 16.10                                                                   | .0000           | 11.3948       | 14.5545           |  |
|                                                                                           | 7  -1.94048***                                                                                                                                                                                                                                                       |                                                                                                                          | -7.03                                                                   |                 |               |                   |  |
| LN H                                                                                      | .29743***                                                                                                                                                                                                                                                            |                                                                                                                          | 5.94                                                                    |                 | .19935        | .39551            |  |
| INC MI                                                                                    | .11225*                                                                                                                                                                                                                                                              | .05745                                                                                                                   | 1.95                                                                    | .0507           | 00035         | .22486            |  |
| INC HIG                                                                                   | H  .25103***                                                                                                                                                                                                                                                         | .06554                                                                                                                   | 3.83                                                                    | .0001           | .12258        | .37947            |  |
| DISH                                                                                      | .30953***                                                                                                                                                                                                                                                            |                                                                                                                          | 3.36                                                                    |                 | .12883        |                   |  |
| WASH                                                                                      | .06625                                                                                                                                                                                                                                                               |                                                                                                                          |                                                                         |                 | 11685         | .24935            |  |
| DRYEI                                                                                     | .16935***                                                                                                                                                                                                                                                            | .04563                                                                                                                   | 3.71                                                                    | .0002           | .07992        | .25878            |  |
|                                                                                           | Variance paramet                                                                                                                                                                                                                                                     | ers for comp                                                                                                             | ound err                                                                | or              |               |                   |  |
| Sigma                                                                                     | a  .43154***                                                                                                                                                                                                                                                         | .13954                                                                                                                   | 3.09                                                                    | .0020           | .15805        | .70502            |  |
|                                                                                           | .50848***                                                                                                                                                                                                                                                            | .00076                                                                                                                   | 665.19                                                                  | .0000           | .50698        | .50998            |  |
| Centre for Energy Policy and Economics Model Wassiss Federal Institutes of Technology     | * ==> Significa<br>as estimated on Se                                                                                                                                                                                                                                |                                                                                                                          |                                                                         |                 |               |                   |  |

•


•

# Inefficiency



### Descriptive Statistics for 2 variables DSTAT results are matrix LASTDSTA in curr

| Percentiles<br>Sample size | CROSS<br>535       | CROSS1<br>535      |
|----------------------------|--------------------|--------------------|
| Min.                       | .092961            | .705713            |
| Olth                       | .100084            | .77817             |
| *025                       | .107907            | .791401            |
| 05th                       | .11637             | .807851            |
| 10th                       | .125494            | .819618            |
| 20th                       | .135072            | .831004            |
| 25th                       | .139294            | .838189            |
| 30th                       | .143306            | .841753            |
| 40th                       | .149287            | .847411            |
| Med.                       | .157465            | .854307            |
| 60th                       | .165965            | .861355            |
| 70th                       | .172268            | .866489            |
| 75th                       | .176512            | .869972            |
| 80th                       | .185242            | .873725<br>.882061 |
| 90th<br>95th               | .198917<br>.212678 | .889672            |
| *975                       | .232767            | .897238            |
| *975<br>99th               | .247658            | .903053            |
| Max.                       | .348546            | .911229            |





4750

Cenarty

🛃 Kernel Density Estimate 13 \*

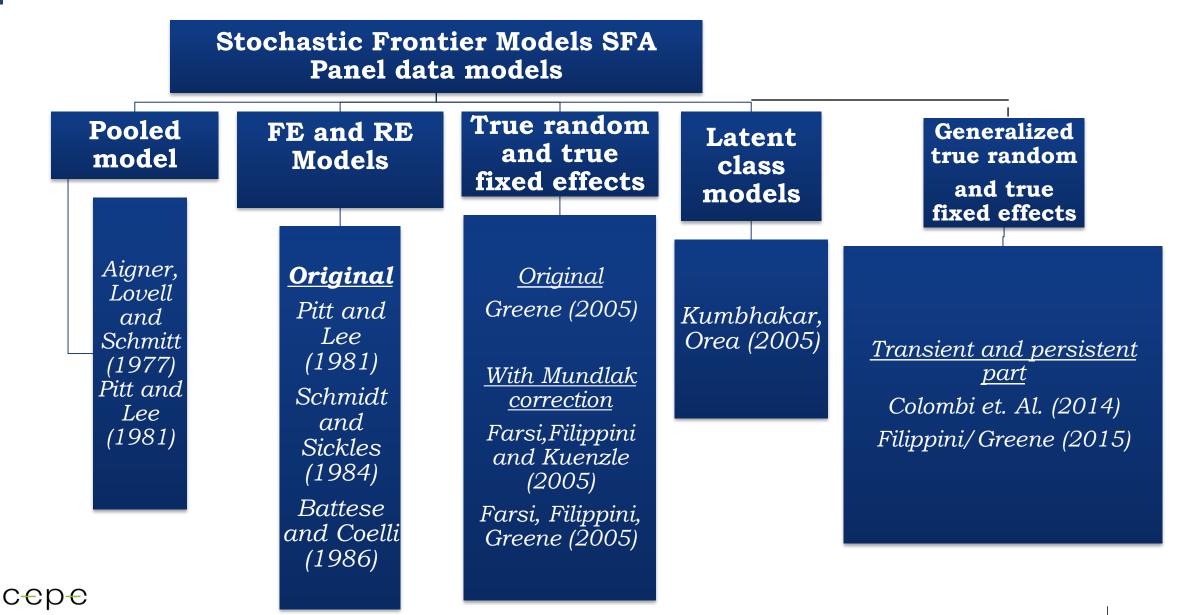
Deneto

- 9 X

CRO

Kernel Density Estimate

3250


.1500

# Residential energy demand using panel data Data collected trough a survey (panel)

|    | А       | В        | С    | D       | E  | F       | G   | Н |      |     | J     | К | L  |    | М   | Ν      | 0     | Р     |   | Q      | R     |
|----|---------|----------|------|---------|----|---------|-----|---|------|-----|-------|---|----|----|-----|--------|-------|-------|---|--------|-------|
| 1  | cust_id | city     | year | EL PE   | (  | GAS     | PG  |   | MILK | PM  | 1     |   | HS | SM |     | INC    | dishw | washm |   | hdd    | cdd . |
| 2  |         | 1 Lugano | 2010 | 1292    | 20 | 28000   | 6.7 |   |      | 40  | 1.8.  |   |    | 1  | 100 | 70000  |       | 0     | 1 | 3602.2 | 133.3 |
| 3  |         | 1 Lugano | 2011 | . 1481  | 21 | 29000   | 7.4 |   |      | 43  | 1.8.  |   |    | 1  | 100 | 70000  |       | 0     | 1 | 2955.4 | 115.5 |
| 4  |         | 1 Lugano | 2012 | 1720    | 21 | 27500   | 7.4 |   |      | 50  | 1.8.  |   |    | 1  | 100 | 70000  |       | 0     | 1 | 3247.8 | 129.8 |
| 5  |         | 1 Lugano | 2013 | 1490    | 21 | 28500   | 6.4 |   |      | 41  | 1.9 . |   |    | 1  | 100 | 70000  |       | 0     | 1 | 3436.2 | 168.1 |
| 6  |         | 1 Lugano | 2014 | 1492    | 21 | 29000   | 6.4 |   |      | 40  | 1.9 . |   |    | 1  | 100 | 70000  |       | 0     | 1 | 2790.3 | 73    |
| 7  |         | 2 Zurich | 2010 | 17742   | 18 |         |     |   |      | 200 | 2.    |   |    | 5  | 180 | 150000 |       | 1     | 0 | 4000   | 100   |
| 8  |         | 2 Zurich | 2011 | . 19013 | 18 |         |     |   |      | 210 | 2.    |   |    | 5  | 180 | 150000 |       | 1     | 0 | 4032   | 89    |
| 9  |         | 2 Zurich | 2012 | 15718   | 19 |         |     |   |      | 202 | 2.    |   |    | 5  | 180 | 150000 |       | 1     | 0 | 4100   | 88    |
| 10 |         | 2 Zurich | 2013 | 14544   | 19 |         |     |   |      | 200 | 2.    |   |    | 5  | 180 | 150000 |       | 1     | 0 | 3999   | 99    |
| 11 |         | 2 Zurich | 2014 | 11884   | 20 |         |     |   |      | 189 | 2.1 . |   |    | 5  | 180 | 150000 |       | 1     | 0 | 4200   | 56    |
| 12 |         | 3 Lugano | 2010 | 1912    | 20 | 40104.1 | 6.7 |   |      | 29  | 1.8.  |   |    | 2  | 90  | 110000 |       | 0     | 0 | 3602.2 | 133.3 |
| 13 |         | 3 Lugano | 2011 | . 1653  | 21 | 36775.1 | 7.4 |   |      | 21  | 1.8.  |   |    | 2  | 90  | 110000 |       | 0     | 0 | 2955.4 | 115.5 |
| 14 |         | 3 Lugano | 2012 | 1806    | 21 | 36509.2 | 7.4 |   |      | 23  | 1.8.  |   |    | 2  | 90  | 110000 |       | 0     | 0 | 3247.8 | 129.8 |
| 15 |         | 3 Lugano | 2013 | 1898    | 21 | 33149.6 | 6.4 |   |      | 24  | 1.9.  |   |    | 2  | 90  | 110000 |       | 0     | 0 | 3436.2 | 168.1 |
| 16 |         | 3 Lugano | 2014 | 1802    | 21 | 35299.9 | 6.4 |   |      | 23  | 1.9.  |   |    | 2  | 90  | 110000 |       | 0     | 0 | 2790.3 | 73    |
| 17 |         | 4 Bern   | 2010 | 2162    | 16 |         |     |   |      | 56  | 2.    |   |    | 2  | 60  | 80000  |       | 1     | 0 | 4100   | 96    |
| 18 |         | 4 Bern   | 2011 | 2304    | 16 |         |     |   |      | 53  | 2.    |   |    | 2  | 60  | 80000  |       | 1     | 0 | 4120   | 94    |
| 19 |         | 4 Bern   | 2012 | 2243    | 16 |         |     |   |      | 58  | 2.    |   |    | 2  | 60  | 80000  |       | 1     | 0 | 4130   | 88    |
| 20 |         | 4 Bern   | 2013 | 1948    | 17 |         |     |   |      | 60  | 2.    |   |    | 2  | 60  | 80000  |       | 1     | 0 | 3990   | 87    |
| 21 |         | 4 Bern   | 2014 | 1965    | 17 |         |     |   |      | 45  | 2.1.  |   |    | 2  | 60  | 80000  |       | 1     | 0 | 4240   | 52    |
| 22 |         |          |      |         |    |         |     |   |      |     |       |   |    |    |     |        |       |       |   |        |       |

# **Advantages of Panel Data**

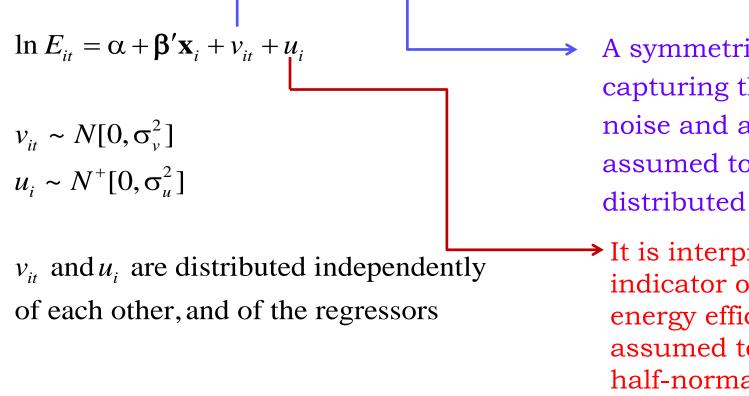
- 1. Greater number of observations  $\rightarrow$  improves efficiency of the estimation
- 2. Panel data allow estimation of dynamic relationships even if we only have a small number time periods
- 3. Account for heterogeneity of cross-section units: it reduces bias due to - Unobserved heterogeneity/ Omitted variables
- 4. Panel data (can) vary across time and between individuals → more information reduces problems of multicollinearity



Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# Pooled model

$$\ln E_{it} = \alpha + \beta' \mathbf{x}_{i} + v_{it} + u_{it}$$


$$v_{it} \sim N[0, \sigma_{v}^{2}]$$

$$u_{it} = |U_{it}| \text{ and } U_{it} \sim N^{+}[0, \sigma_{u}^{2}]$$

$$v_{it} \text{ and } u_{it} \text{ are distributed independently}$$
of each other, and of the regressors

- A symmetric disturbance capturing the effect of noise and as usual is assumed to be normally distributed
- It is interpreted as an indicator of energy efficiency and is assumed to be half-normal distributed *Time varying inefficiency*

# RE model (PITT and LEE)



- A symmetric disturbance capturing the effect of noise and as usual is assumed to be normally distributed
- → It is interpreted as an indicator of energy efficiency and is assumed to be half-normal distributed *Time invariant inefficiency*

**ETH** zürich

# True random effects model (TRE) Greene (2005)



CECPE Centre for Energy Policy and Economics Swiss Federal Institutes of Technology Y

# TRE model

$$\ln E_{it} = w_i + \beta' \mathbf{x}_{it} + v_{it} + u_{it}$$

$$v_{it} \sim N[0, \sigma_v^2]$$

$$u_{it} \sim N^+[0, \sigma_u^2]$$

$$w_i \sim N \ (0, s_w^2)$$

 $w_i, v_{it}$  and  $u_{it}$  are distributed independently of each other, and of the regressors

Maximum Simulated Likelihood (RPM)

Unobserved time invariant heterogeneity

A symmetric disturbance capturing the effect of noise and as usual is assumed to be normally distributed

It is interpreted as an indicator of energy efficiency and is assumed to be half-normal distributed *Time varying inefficiency*

# GTRE model (persistent/transient) Filippini and Greene (2015)

 $\ln E_{it} = w_i + h_i + \beta' \mathbf{x}_{it} + v_{it} + u_{it}$  $v_{it} \sim N[0,\sigma_v^2]$  $u_{it} \sim N^+[0,\sigma_u^2]$  $W_i \sim N (0, s_w^2)$  $h_i \sim N^+(0, {s_h}^2)$  $w_i, h_i, v_{it}$  and  $u_{it}$  are distributed independently of each other, and of the regressors

Maximum Simulated Likelihood (RPM)

Unobserved time invariant heterogeneity

A symmetric disturbance capturing the effect of noise and as usual is assumed to be normally distributed

Time transient inefficiency

✓ Time persistent inefficiency

Centre for Energy Policy and Economic Swiss Federal Institutes of Technology

CEDE

| Random CoefficientsFrontier ModelDependent variableLN_ELog likelihood function-107.93895Estimation based on N = 2605, K = 12Inf.Cr.AIC = 239.9 AIC/N = .092Unbalanced panel has545 individualsSimulation based on150 Halton draws |                                        |                                                                    |                                                        |                                                             |                                                                               |                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|--|--|
| Closed Sk                                                                                                                                                                                                                         | kew Normal(LR/SR)                      | Frontier Mode                                                      |                                                        |                                                             |                                                                               |                         |  |  |
| Short and Long Run Components<br>Short Run Time Varying<br>Sigma(uit) (1 sided) = .16812<br>Sigma(vit) (symmetric) = .14154<br>Long Run Time Fixed                                                                                |                                        |                                                                    |                                                        |                                                             |                                                                               |                         |  |  |
| Theta( ai                                                                                                                                                                                                                         | i) (1 sided) =<br>i) (symmetric) =     | 1.1191                                                             | .6<br>2                                                |                                                             |                                                                               |                         |  |  |
| LN_E                                                                                                                                                                                                                              | Coefficient                            | Standard<br>Error                                                  | z                                                      | Prob.<br> z >Z <b>*</b>                                     | 95% Confid<br>Interva                                                         | ence<br>1               |  |  |
| LN_MP_AV<br>LN_HS<br>INC_MID<br>INC_HIGH<br>DISHW<br>WASHM<br>DRYER                                                                                                                                                               | .06149 <b>***</b><br>.07148 <b>***</b> | .03100<br>.00751<br>.00947<br>.01055<br>.01484<br>.01540<br>.00741 | -9.27<br>35.59<br>3.32<br>9.24<br>8.20<br>3.99<br>9.65 | .0000<br>.0000<br>.0009<br>.0000<br>.0000<br>.0001<br>.0001 | 34833<br>.25255 .<br>.01287 .<br>.07682 .<br>.09266 .<br>.03130 .<br>.05696 . | 15085<br>09168<br>08600 |  |  |
| Constant<br>Constant                                                                                                                                                                                                              | Theta_fi = std.                        | dev. of time<br>.00358                                             | fixed s<br>143.29                                      | ymmetric<br>.0000                                           | f(i)<br>.50561 .                                                              |                         |  |  |
| Sigma                                                                                                                                                                                                                             | .21977 <b>***</b><br>Asymmetry parame  | .00290<br>ter, lambda                                              | 75.76                                                  | .0000                                                       | . 21408 .                                                                     |                         |  |  |
|                                                                                                                                                                                                                                   | 1.18782***<br>Theta_ai = std.          | dev. of time                                                       | fixed o                                                | ne sided                                                    | a(i)                                                                          |                         |  |  |
|                                                                                                                                                                                                                                   | 1.11916***<br>                         |                                                                    |                                                        |                                                             | 1.06239 1.                                                                    | 17593                   |  |  |

1

Model was estimated on Sep 08, 2017 at 01:11:25 PM

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

сере

| Variable | Mean    | Standard<br>Deviation | Minimum | Maximum | Cases | Missing<br>Values |
|----------|---------|-----------------------|---------|---------|-------|-------------------|
| EFF_SR   | .882172 | .04346                | .34792  | .971789 | 2605  | 0                 |
| EFF_LR   | .712525 | .004043               | .682139 | .780171 | 2605  | 0                 |

Descriptive Statistics for 2 variables DSTAT results are matrix LASTDSTA in current project.

\_\_\_\_\_

| Percentiles | EFF_SR  | EFF_LR  |
|-------------|---------|---------|
| Sample size | 2605    | 2605    |
| Min.        | .34792  | .682139 |
| 01th        | .710866 | .701591 |
| *025        | .775615 | .706042 |
| 05th        | .805159 | .707394 |
| 10th        | .838734 | .709066 |
| 20th        | .862661 | .710846 |
| 25th        | .869627 | .71186  |
| 30th        | .87508  | .711616 |
| 40th        | .884157 | .712119 |
| Med.        | .890675 | .712618 |
| 60th        | .896025 | .713153 |
| 70th        | .902164 | .713686 |
| 75th        | .905244 | .71407  |
| 80th        | .908958 | .714457 |
| 90th        | .918813 | .715527 |
| 95th        | .929705 | .716895 |
| *975        | .940688 | .71754  |
| 99th        | .95166  | .721209 |
| Max.        | .971789 | .780171 |

C-OD-O Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# Content

- A. Definition
- B. Measurement
- C. Empirical Study



1

### ETHzürich



# <u>The role of energy and investment literacy for residential</u> <u>electricity demand and end-use efficiency</u>

Blasch J. Boogen N., Filippini M., Kumar N., (forthcoming). <u>The role of energy and investment</u> <u>literacy for residential electricity demand and end-use efficiency</u>. *Energy Economics* 

# **Research questions**

- Measure the level of efficiency in the use of energy (electricity)
- Identifying what drives the differences in the level of *En.Eff.* between Swiss households

role of behavioral factors
role of investment literacy
role of energy literacy



# Literacy

# Energy related investment literacy (financial literacy)

 Investment literacy can be defined as the ability to perform an investment analysis and to calculate the lifetime cost of an appliance or energy-efficient renovation.

# Energy literacy

 Energy literacy can be defined as household's knowledge about energy production and consumption

# **Electricity demand model**

$$\ln E_{it} = \alpha_0 + \alpha_p \ln p_{it}^E + \alpha_M M_{it} + \alpha_H H_{it} + \alpha_{ES} E S_{it} + \alpha_L LOC_{it} + \alpha_w W_{it} + \alpha_{LT} LIT_{it} + \alpha_{BE} B E H_{it} + \alpha_T T_t + \alpha_{TT} T_t^2 + \varepsilon_{it}$$
(1)

where  $E_{it}$  is the electricity demand (in kWh),  $p_{it}^E$  is the electricity price,  $M_{it}$  is a vector of household characteristics,  $H_{it}$  is a vector of dwelling characteristics,  $ES_{it}$  is the amount of energy services consumed,  $LOC_{it}$  is the utility service area and  $W_{it}$  is the number of heating degree days (HDD) and cooling degree days (CDD) that the household experiences.  $LIT_{it}$  represents the level of energy and investment literacy of the respondent,  $BEH_{it}$  captures the energy saving behaviour of the household,  $T_t$  and  $T_t^2$  capture the time trend, and  $\varepsilon_{it}$  is the overall error term. This equation represents the minimum electricity consumption as a function of electricity price, weather influences, household and dwelling characteristics, stock of special appliances<sup>8</sup>, level of energy services, energy and investment literacy, and energy saving behaviour. We use a log-log model specification in the empirical analysis presented in this paper.

# The GTREM specification

Model:  $y_{it} = \alpha + \beta' \mathbf{x}_{it} + \varepsilon_{it}$ 

Full random error ( $\varepsilon_{it}$ ):  $\begin{cases} \varepsilon_{it} = W_i + h_i + u_{it} + \nu_{it} \\ u_{it} \sim N^+[0, \sigma_u^2] \\ h_i \sim N^+[0, \sigma_h^2] \\ \nu_{it} \sim N[0, \sigma_\nu^2] \\ W_i \sim N[0, \sigma_w^2] \end{cases}$ 

*Note:* A log-log model specification is used in the empirical analysis.  $E(h_i | \mathbf{y}_i)$  captures the persistent inefficiency and  $E(u_{it} | \mathbf{y}_i)$  captures the transient inefficiency.



# **Energy Literacy and Energy Saving Behaviour**

Energy literacy index (0 –14)

Saverage price of 1 kWh
Susage cost of household appliances (2 Qs)

- Sconsumption of household appliances (3 Qs)
- ⇔compound interest calculation

Energy saving behaviour index (0-4)

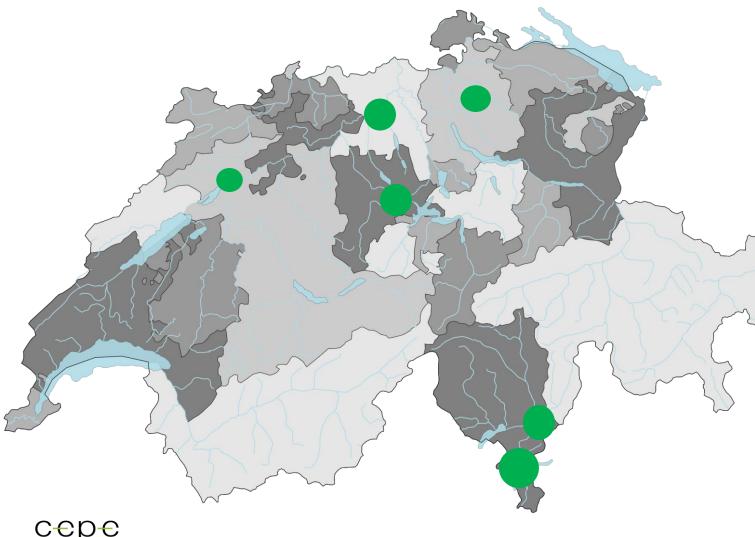
running washing machine only on full load

- Swashing clothes on a lower water temperature
- Solution distance of the set of t

⇔switching off appliances

Investment literacy index

Compound interest question  $\oiint$  ...




### ETHzürich

# Data

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

Household Survey on Energy Usage



- 6 Swiss Electric and Gas utilities
  - Survey organization
    ♥ Online survey in 2015 2016
    ♥ Randomly chosen sample
    ♥ Consumption data: 2010 -

2014

 Dataset used here:
 6 utilities: Aarau, Winterthur Biel, Luzern, Lugano and Bellinzona
 ~1994 households

# Questionnaire

- House/apartment characteristics
- Socio-demographics
- Appliance stock and energy services
- Attitudes towards environment
- Energy-related behaviour
- Energy related knowledge (energyliteracy)

- Representativeness:

   → gender, age and income groups are sufficiently covered
- Share of respondents who donated money to an environmental organization in line with Swiss average → limited self-selection of pro-environmental households

сере

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

|                                                                              | 14                                  |                               |                                     |                               |                                                                                                                                                      | GTF                                                                          | REM-1                                                          | GTR                                                                      | EM-2                                                           |
|------------------------------------------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|
| Estimation                                                                   | result                              | S                             |                                     |                               |                                                                                                                                                      | Coefficient                                                                  | Std. error                                                     | Coefficient                                                              | Std. error                                                     |
| (Log) price of electricity                                                   | -0.3032***                          | (0.037)                       | -0.2882***                          | (0.037)                       | (Log) price of electricity<br>Single family household<br>(Log) household size<br>(Log) dwelling size in m2<br>Has young people<br>Has elderly people | -0.3032***<br>0.1674***<br>0.3472***<br>0.3921***<br>-0.0449***<br>0.0346*** | (0.037)<br>(0.007)<br>(0.011)<br>(0.009)<br>(0.008)<br>(0.006) | -0.2882***<br>0.2305***<br>0.4338***<br>0.4778***<br>0.0011<br>0.0215*** | (0.037)<br>(0.007)<br>(0.011)<br>(0.009)<br>(0.008)<br>(0.006) |
| Single family household<br>(Log) household size<br>(Log) dwelling size in m2 | 0.1674***<br>0.3472***<br>0.3921*** | (0.007)<br>(0.011)<br>(0.009) | 0.2305***<br>0.4338***<br>0.4778*** | (0.007)<br>(0.011)<br>(0.009) | Income in 6k - 12k<br>Income above 12k<br>Built in 1940 - 1970<br>Built in 1970 - 2000<br>Built in 2000 - 2015                                       | -0.0119**<br>-0.0180**<br>-0.0773***<br>0.0440***<br>-0.0558***              | (0.006)<br>(0.009)<br>(0.008)<br>(0.007)<br>(0.009)            | -0.0090<br>-0.0134<br>-0.0736***<br>0.1076***<br>0.0408***               | (0.006)<br>(0.009)<br>(0.008)<br>(0.007)<br>(0.009)            |
|                                                                              |                                     |                               |                                     |                               | Minergie house<br>Absent 5 to 8 weeks/year<br>Has 2nd fridge<br>Has separate freezer<br>No special appliances                                        | 0.0185*<br>-0.1506***<br>0.1042***<br>0.1126***<br>-0.0767***                | (0.010)<br>(0.009)<br>(0.007)<br>(0.005)<br>(0.006)            | 0.0633***<br>-0.1526***<br>0.1494***<br>0.1481***<br>-0.0858***          | (0.010)<br>(0.009)<br>(0.007)<br>(0.005)<br>(0.006)            |
|                                                                              |                                     |                               |                                     |                               | (Log) number of cooked meals<br>(Log) dishwashing cycles<br>(Log) cloth washing/drying cycles<br>(Log) hours of tv/pc                                | 0.0021<br>0.1151***<br>0.1009***<br>0.1708***                                | (0.006)<br>(0.004)<br>(0.004)<br>(0.004)                       |                                                                          |                                                                |
|                                                                              |                                     |                               |                                     |                               | Cooks using electricity<br>(Log) heating degree days<br>(Log) cooling degree days<br>Region = Aarau                                                  | 0.0957***<br>-0.1051<br>0.1923***<br>0.0559***                               | (0.008)<br>(0.111)<br>(0.046)<br>(0.020)                       | 0.1598***<br>-0.0777<br>0.1717***<br>0.0314                              | (0.008)<br>(0.110)<br>(0.046)<br>(0.020)                       |
|                                                                              |                                     |                               |                                     |                               | Region = Winterthur<br>Region = Biel/Bienne<br>Region = Lucerne<br>Region = Bellinzona<br>University degree                                          | -0.1312***<br>0.0768***<br>-0.0514***<br>-0.2524***<br>-0.0144***            | (0.040)<br>(0.024)<br>(0.017)<br>(0.066)<br>(0.006)            | -0.0879**<br>0.0396<br>-0.0846***<br>-0.2864***<br>-0.0434***            | (0.040)<br>(0.024)<br>(0.017)<br>(0.065)<br>(0.006)            |
| (Log) energy literacy index<br>Investment literacy<br>Time trend (linear)    | -0.0126***<br>-0.1137***            | (0.004)<br>(0.006)            | -0.0157***<br>-0.1109***            | (0.004)<br>(0.006)            | University degree (partner)<br>(Log) energy saving behaviour<br>(Log) energy literacy index<br>Investment literacy                                   | -0.0185***<br>-0.0227***<br>-0.0126***<br>-0.1137***                         | (0.007)<br>(0.007)<br>(0.004)<br>(0.006)                       | -0.0088<br>-0.0412***<br>-0.0157***<br>-0.1109***                        | (0.007)<br>(0.007)<br>(0.004)<br>(0.006)                       |
| Time trend (linear)                                                          | -0.1190***                          | (0.022)                       | -0.1072***                          | (0.022)                       | Time trend (linear)<br>Time trend (quadratic)                                                                                                        | -0.1190***<br>0.0230***                                                      | (0.022)<br>(0.004)                                             | -0.1072***<br>0.0213***                                                  | (0.022)<br>(0.004)                                             |
|                                                                              |                                     |                               |                                     |                               | $lpha \ \sigma_w \ \sigma_{( u+u)} \ \lambda \ \sigma_h$                                                                                             | 5.6722***<br>0.3960***<br>0.2542***<br>0.7553***<br>0.5411***                | (0.719)<br>(0.002)<br>(0.003)<br>(0.041)<br>(0.017)            | 5.5717***<br>0.4228***<br>0.2894***<br>1.2193***<br>0.2696***            | (0.713)<br>(0.002)<br>(0.003)<br>(0.041)<br>(0.014)            |

### Different econometric specifications!

\*\*\*, \*\*, \*  $\Rightarrow$  Significance at 1%, 5%, 10% level.

Observations:

Log-likelihood:

8295

-1735.7

8295

-1867.4

# **Estimation results**

**Table 5:** Efficiency scores (transient and persistent).

| Efficiency type                   | Median | Mean  | Std. Dev. | Minimum | Maximum |  |  |  |
|-----------------------------------|--------|-------|-----------|---------|---------|--|--|--|
| GTREM-1 (with energy services)    |        |       |           |         |         |  |  |  |
| Transient                         | 0.894  | 0.892 | 0.026     | 0.634   | 0.974   |  |  |  |
| Persistent                        | 0.785  | 0.784 | 0.013     | 0.394   | 0.841   |  |  |  |
| GTREM-2 (without energy services) |        |       |           |         |         |  |  |  |
| Transient                         | 0.856  | 0.848 | 0.051     | 0.395   | 0.966   |  |  |  |
| Persistent                        | 0.841  | 0.840 | 0.006     | 0.675   | 0.951   |  |  |  |

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# Conclusions

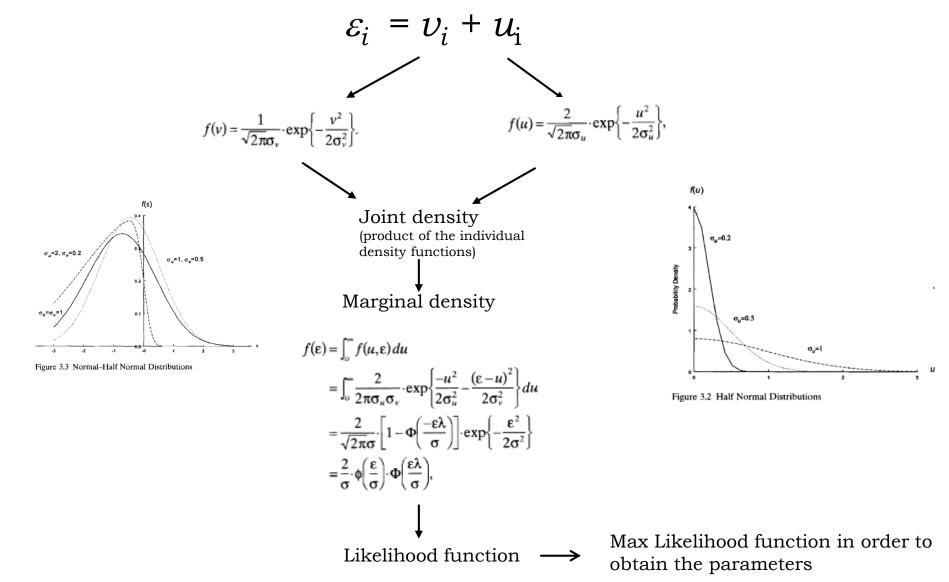
- Estimation of an indicator of the level of energy efficiency for each household
  - $\rightarrow$  Measure of efficiencies (median values)
  - $\clubsuit$  Persistent efficiency: 78 %
  - Transient efficiency: 89 %

### Higher persistent inefficiency

structural problems faced by household
systematic behavioural shortcomings

# Positive role of energy related literacy and energy saving behaviour Electricity consumption is lower in households exhibiting energy saving behaviours Higher level of energy literacy is associated with lower electricity consumption Higher level of financial literacy is associated with lower electricity consumption Higher level of financial literacy is associated with lower electricity consumption CEPE

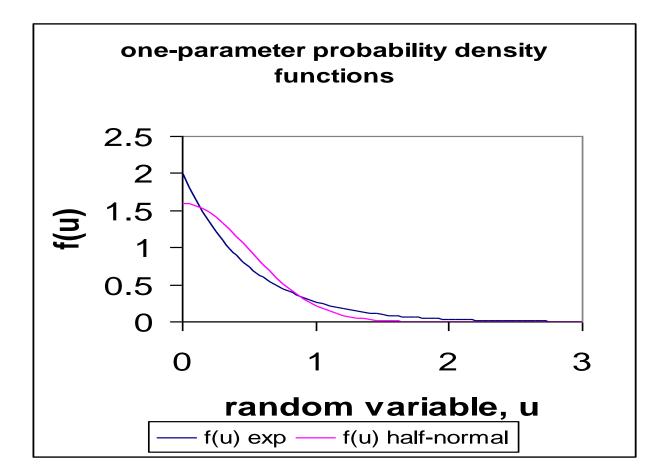
# References


- Blasch J. Boogen N., Filippini M., Kumar N., (forthcoming). <u>The role of energy and investment literacy for residential electricity demand and end-use efficiency</u>. *Energy Economics*.
- Filippini M., Hunt L., (2016). <u>Measuring Persistent and Transient Energy</u> <u>Efficiency in the US</u>, *Energy Efficiency*, 9(3), 663-675.
- Filippini M., Greene W., (2016). <u>Persistent and Transient Productive</u> <u>Inefficiency: A Maximum Simulated Likelihood Approach</u>. *Journal of Productivity Analysis*, 45(2), 187-196.

**ETH** zürich

# Appendix




**EH**zürich



## The marginal density function of $e_i$ is

$$f_{\varepsilon}(\varepsilon_{i}) = \frac{2}{\sigma\sqrt{2\pi}} \phi\left(\frac{\varepsilon_{i}}{\sigma}\right) \left[\Phi\left(\frac{-\varepsilon_{i}\lambda}{\sigma}\right)\right].$$

where  $\sigma = (\sigma_u^2 + \sigma_v^2)^{1/2}$ ,  $\lambda = \sigma_u/\sigma_v$ , and  $\Phi(\cdot)$  and  $\phi(\cdot)$  are the standard normal cumulative distribution and density functions. As  $\lambda \to 0$  either  $\sigma_v^2 \to +\infty$  or  $\sigma_u^2 \to 0$ , and the symmetric error component dominates the one-sided error component in the determination of  $\varepsilon$ . As  $\lambda \to +\infty$ either  $\sigma_u^2 \to +\infty$  or  $\sigma_v^2 \to 0$  and the one-sided error component dominates the symmetric error component in the determination of  $\varepsilon$ . In the former case the stochastic cost frontier model collapses to an OLS cost function model with no variation in cost efficiency, whereas in the latter case the model collapses to a deterministic cost frontier model with no noise. The exponential and half-normal assumption reflect the belief that larger values of inefficiency are less likely.



Ceppe Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

# An input requirement function (Boyd, 2008);

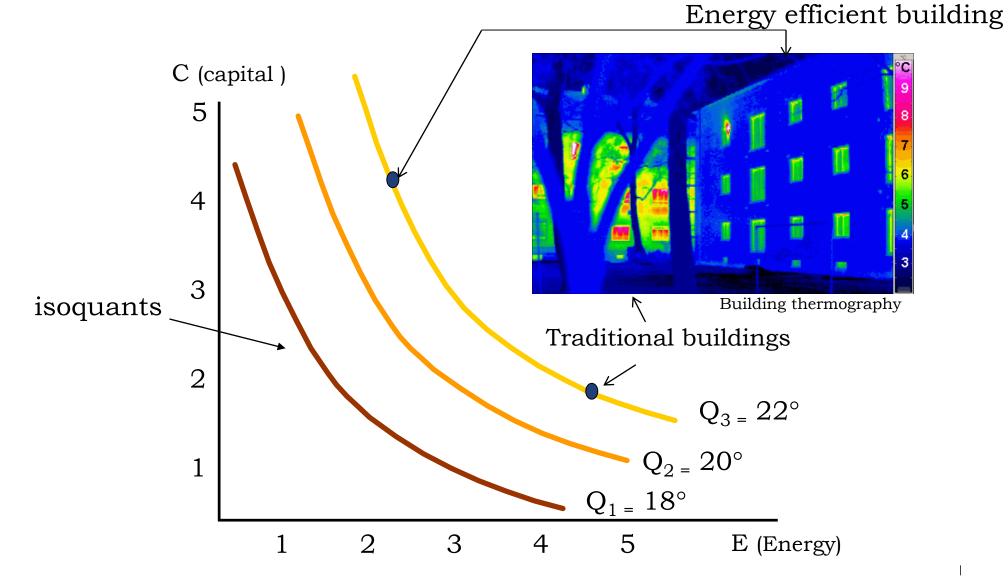
E=f(Y,K,LT)

$$ln E_{it} = \alpha + \beta' \mathbf{x}_{it} + \varepsilon_{it}$$
  

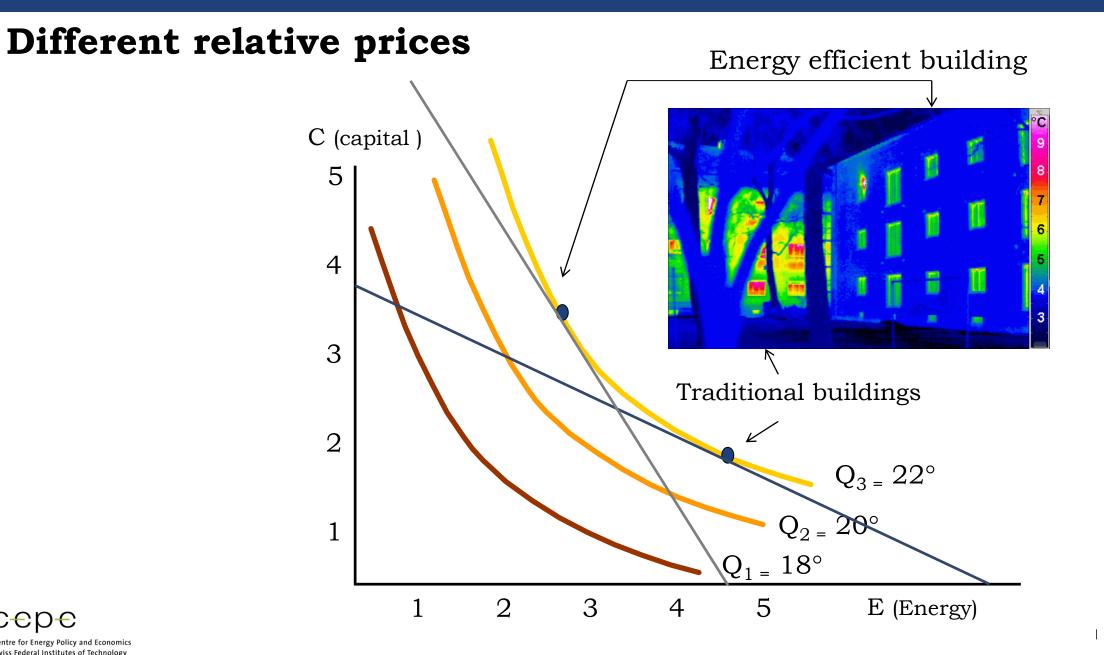
$$v_{it} \sim N[\mathbf{0}, \sigma_v^2],$$
  

$$u_{it} = |U_i|, U_{it} \sim N[\mathbf{0}, \sigma_u^2],$$
  

$$\varepsilon_{it} = v_{it} + u_{it},$$


Another example of using an energy requirement function is Lin and Wang (2014) who estimate a translog specification as follows<sup>32</sup>:

$$\begin{split} \ln E_{it} &= \beta_0 + \beta_y \ln Y_{it} + \beta_k \ln K_{it} + \beta_l \ln L_{it} + \frac{1}{2} \beta_{yy} (\ln Y_{it})^2 + \frac{1}{2} \beta_{kk} (\ln K_{it})^2 + \frac{1}{2} \beta_{ll} (\ln L_{it})^2 + \beta_{kl} (\ln K_{it} * \ln L_{it}) + \beta_{yk} (\ln Y_{it} * \ln K_{it}) + \beta_{yl} (\ln Y_{it} * \ln L_{it}) + \beta_t T + \frac{1}{2} \beta_{tt} T^2 + \beta_{ty} (T * \ln Y_{it}) \\ &+ \beta_{tk} (T * \ln K_{it}) + \beta_{tl} (T * \ln L_{it}) + \upsilon_{it} + u_{it} \end{split}$$




### **ETH** zürich

# Case 1: production of an energy service (heating an apartment)



### **ETH** zürich



# A stocastic frontier energy demand function (Filippini and Hunt, 2011)

$$\begin{split} &\ln E_{it} = \boldsymbol{\alpha} + \boldsymbol{\beta}' \mathbf{Z}_{it} + \varepsilon_{it} \\ &v_{it} \sim N \big[ \mathbf{0}, \sigma_v^2 \big], \\ &u_{it} = |U_i|, \ U_{it} \sim N \big[ \mathbf{0}, \sigma_u^2 \big], \\ &\varepsilon_{it} = v_{it} + u_{it}, \end{split}$$

The final group of examples estimate energy demand frontier functions. Filippini and Hunt (2011) estimated an energy demand frontier function for the whole economy with an unbalanced panel of 29 OECD countries over the period 1978 to 2006, which was extended and updated in Evans et al. (2013) for the period 1978 to 2008. The specification used being:

$$e_{it} = \alpha + \alpha^{y} y_{it} + \alpha^{p} p_{it} + \alpha^{pop} pop_{it} + \delta_{t} D_{t} + \alpha^{C} DCOLD_{i} + \alpha^{R} DARID_{i} + \alpha^{a} a_{i} + \alpha^{I} ISH_{it} + \alpha^{S} SSH_{it} + v_{it} + u_{it}$$

# Possible distributions for $u_i$

- Normal- Half-Normal model
- Normal-exponential model
- Two parameters distributions:
   Normal- Truncated-Normal model
   Normal- gamma model