Interdependence of Trade Policies in General Equilibrium

Mostafa Beshkar Ahmad Lashkaripour Pasargad Summer School, July 2017

Indiana University

Motivation

• Explosion of quantitative gravity models featuring:

- 1. Many differentiated (or homogeneous) sectors.
- 2. Various general equilibrium interactions.

• Gravity models have transformed the way economists think about international trade...

• ...but little impact on how we think about *trade policy*!

• Gravity models have transformed the way economists think about international trade...

• ...but little impact on how we think about *trade policy!*

The State of Trade Policy Research

1. Studies using multi-sector gravity frameworks.

- Either purely computational...
- ... or abstract from revenue-generating trade barriers (RTBs).

- 2. Many analysis of RTBs using the classical approach.
 - Assume homogeneous sectors.
 - Abstract from GE interactions.

- 1. Studies using multi-sector gravity frameworks.
 - Either purely computational...
 - ... or abstract from revenue-generating trade barriers (RTBs).

- 2. Many analysis of RTBs using the classical approach.
 - Assume homogeneous sectors.
 - Abstract from GE interactions.

- 1. Studies using multi-sector gravity frameworks.
 - Either purely computational...
 - ... or abstract from revenue-generating trade barriers (RTBs).

- 2. Many analysis of RTBs using the classical approach.
 - Assume homogeneous sectors.
 - Abstract from GE interactions.

- 1. Studies using multi-sector gravity frameworks.
 - Either purely computational...
 - ... or abstract from revenue-generating trade barriers (RTBs).

- 2. Many analysis of RTBs using the classical approach.
 - Assume homogeneous sectors.
 - Abstract from GE interactions.

- 1. Studies using multi-sector gravity frameworks.
 - Either purely computational...
 - ... or abstract from revenue-generating trade barriers (RTBs).

- 2. Many analysis of RTBs using the classical approach.
 - Assume homogeneous sectors.
 - Abstract from GE interactions.

- Adopt a GE multi-sector gravity model.
- Sectors are inter-related through:
 - 1. Factor price linkages.
 - 2. Cross price elasticity effects.

Goal 1: Solve for the optimal trade policy.

Goal 2: Characterize the interdependence of sector-level policies

- Adopt a GE multi-sector gravity model.
- Sectors are inter-related through:
 - 1. Factor price linkages.
 - 2. Cross price elasticity effects.

Goal 1: Solve for the optimal trade policy.

Goal 2: Characterize the interdependence of sector-level policies

- GE environment \implies distinct tax structure:
 - Uniform tariffs + non-uniform export taxes
 - Key parameter: sector-level trade elasticity

- Policy interdependence:
 - Sector-level tariffs are complementary
 - Import policy *cannot* substitute export policy

- GE environment \implies distinct tax structure:
 - Uniform tariffs + non-uniform export taxes
 - Key parameter: sector-level trade elasticity

- Policy interdependence:
 - Sector-level tariffs are complementary
 - Import policy *cannot* substitute export policy

Theoritical Framework

- K sectors
- Two countries: Home (h) and ROW (f)
- Perfect competition
- One "Hicksian composite" factor of production (L_i)

- K sectors (K can be arbitrarily large)
- Two countries: Home (h) and ROW (f)
- Perfect competition
- One "Hicksian composite" factor of production (L_i)

- K sectors
- Two countries: Home (h) and ROW (f)
- Perfect competition
- One "Hicksian composite" factor of production (L_i)

- K sectors
- Two countries: Home (h) and ROW (f)
- Perfect competition
- One "Hicksian composite" factor of production (L_i)

- K sectors
- Two countries: Home (h) and ROW (f)
- Perfect competition
- One "Hicksian composite" factor of production (L_i)

•

•

Total welfare in country \boldsymbol{i}

$$W_i = U_i(Q_{i,1}, ..., Q_{i,K})$$

Total welfare in country \boldsymbol{i}

$$W_i = V_i(Y_i, P_{i,1}, ..., P_{i,K})$$

- Y_i : total income
- $P_{i,k}$: price index of sector k in country i

Total welfare in country i

$$W_i = V_i(Y_i, P_{i,1}, ..., P_{i,K})$$

- Income effects: $Q_{i,1}/Q_{i,2}$ can vary with Y_i
- Cross-elasticity effects: $Q_{i,1}$ responds to changes in $P_{i,2}$

CES import demand structure within sectors:

$$P_{i,k} = \sum_{j=h,f} A_{j,k} \left[\tau_{ji,k} \left(1 + t_{ji,k} \right) \left(1 + x_{ji,k} \right) w_j \right]^{-\theta_k}$$

- $A_{j,k}$: country j's productivity level in sector k
- w_j : wage rate in country j
- θ_k : trade elasticity in sector k

Within Sector Trade

CES import demand structure within sectors:

$$P_{i,k} = \sum_{j=h,f} A_{j,k} \left[\boldsymbol{\tau_{ji,k}} \left(1 + \boldsymbol{t_{ji,k}} \right) \left(1 + \boldsymbol{x_{ji,k}} \right) w_j \right]^{-\theta_k}$$

Three policy instruments:

- RTBs
 - Import tax by country i on country j exports: $t_{ji,k}$
 - Export tax by country j on own exports to country $i: x_{ji,k}$
- NRTBs
 - Iceberg or wasteful trade barriers: $\tau_{ji,k}$

Share of country i's spending on country j varieties in sector k:

$$\lambda_{ji,k} = \frac{A_{j,k} \left[\tau_{ji,k} \left(1 + t_{ji,k}\right) \left(1 + x_{ji,k}\right) w_j\right]^{-\theta_k}}{\sum_{n=h,f} A_{n,k} \left[\tau_{ni,k} \left(1 + t_{ni,k}\right) \left(1 + x_{ni,k}\right) w_n\right]^{-\theta_k}}$$

Special case:

- $\theta_k \to \infty$: sectors are homogeneous.
- Ricardian model with K (possibly infinite) commodities.

Share of country i's spending on country j varieties in sector k:

$$\lambda_{ji,k} = \frac{A_{j,k} \left[\tau_{ji,k} \left(1 + t_{ji,k}\right) \left(1 + x_{ji,k}\right) w_j\right]^{-\theta_k}}{\sum_{n=h,f} A_{n,k} \left[\tau_{ni,k} \left(1 + t_{ni,k}\right) \left(1 + x_{ni,k}\right) w_n\right]^{-\theta_k}}$$

Special case:

- $\theta_k \to \infty$: sectors are homogeneous.
- Ricardian model with K (possibly infinite) commodities.

Total income in country i

 $Y_i = \text{factor income} + \text{IM tax rev.} + \text{EX tax rev.}$

Total income in country i

$$Y_i = w_i L_i + \underbrace{\sum_{k} \frac{t_{ji,k}}{1 + t_{ji,k}} X_{ji,k}}_{\text{IM tax rev.}} + \underbrace{\sum_{k} x_{ij,k} X_{ij,k}}_{\text{EX tax rev.}}$$

• $X_{ji,k}$: f.o.b. value of exports from j to i

• $Y_{i,k}$ income spent on sector k

Total income in country \boldsymbol{i}

$$Y_i = w_i L_i + \underbrace{\sum_{k} \frac{t_{ji,k}}{1 + t_{ji,k}} X_{ji,k}}_{\text{IM tax rev.}} + \underbrace{\sum_{k} x_{ij,k} X_{ij,k}}_{\text{EX tax rev.}}$$

•
$$X_{ji,k} = \frac{\lambda_{ji,k}Y_{i,k}}{1+t_{ji,k}}$$

• $Y_{i,k}$ income spent on sector k

Optimal Policy

- No foreign RTBs: $t_{hf,k} = x_{fh,k} = 0 \ \forall k$
- (For now) take the NRTBs as given.
- Solve for $\{x_k^*, t_k^*\}_k$
 - $t_k^* \equiv t_{fh,k}^*$ (Home's optimal tariff in sector k)
 - $x_k^* \equiv x_{hf,k}^*$ (Home's optimal export tax in sector k)

- No foreign RTBs: $t_{hf,k} = x_{fh,k} = 0 \ \forall k$
- (For now) take the NRTBs as given.
- Solve for $\{x_k^*, t_k^*\}_k$
 - $t_k^* \equiv t_{fh,k}^*$ (Home's optimal tariff in sector k)
 - $x_k^* \equiv x_{hf,k}^*$ (Home's optimal export tax in sector k)

- No foreign RTBs: $t_{hf,k} = x_{fh,k} = 0 \ \forall k$
- (For now) take the NRTBs as given.
- Solve for $\{x_k^*, t_k^*\}_k$
 - $t_k^* \equiv t_{fh,k}^*$ (Home's optimal tariff in sector k)
 - $x_k^* \equiv x_{hf,k}^*$ (Home's optimal export tax in sector k)

• Step 1: assume $\{x_k\} = 0 \Longrightarrow$ solve for $\{t_k^*\}$

• Social planners problem:

$$\max_{t_k} V_h(Y_h, \boldsymbol{P_h} \mid \boldsymbol{x} = 0)$$

s.t.
$$\sum_{k} X_{fh,k} = \sum_{k} X_{hf,k}$$

• Step 1: assume $\{x_k\} = 0 \Longrightarrow$ solve for $\{t_k^*\}$

• Social planners problem:

$$\max_{t_k} V_h(Y_h, \boldsymbol{P_h} \mid \boldsymbol{x} = 0)$$

s.t.
$$\sum_{k} X_{fh,k} = \sum_{k} X_{hf,k}$$
• Step 1: assume $\{x_k\} = 0 \Longrightarrow$ solve for $\{t_k^*\}$

• Social planners problem:

$$\max_{t_k} V_h(Y_h, \boldsymbol{P_{h,k}} \mid \boldsymbol{x} = 0)$$

s.t.
$$\underbrace{\sum_{k} X_{fh,k} = \sum_{k} X_{hf,k}}_{\text{Polynor Trade}}$$

Balance Trade

$$\bar{t}^* = \frac{1}{\frac{\partial \ln X_{hf}}{\partial \ln w} - 1}$$

$$\bar{t}^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + \sum_{k=1}^{K} \left(\frac{X_{hf,k}}{X_{hf}} - \alpha_{f,k}\right) \frac{\partial \ln \alpha_{f,k}}{\partial \ln w}}$$

$$\bar{t}^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + \sum_{k=1}^{K} \left(\frac{X_{hf,k}}{X_{hf}} - \alpha_{f,k}\right) \frac{\partial \ln \alpha_{f,k}}{\partial \ln w}}$$

$$\bar{t}^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + \sum_{k=1}^{K} \left(\frac{X_{hf,k}}{X_{hf}} - \alpha_{f,k}\right) \frac{\partial \ln \alpha_{f,k}}{\partial \ln w}}{\sum_k \frac{X_{fh,k}}{X_{fh}} \theta_k \lambda_{ff,k}}}$$

• One sector economy (Gross 1987):
$$t^* = \frac{1}{\theta \lambda_{ff}}$$

• Cobb-Douglass across sectors:
$$\bar{t}^* = \frac{1}{\bar{\theta}_{hf}\lambda_{ff}}$$

$$t^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + (\sigma - 1)\sum_k \frac{X_{hf,k}}{X_{hf}} \left[\lambda_{hf,k} - \lambda_{hf}\right]}$$

• One sector economy (Gross 1987):
$$t^* = \frac{1}{\theta \lambda_{ff}}$$

• Cobb-Douglass across sectors: $\bar{t}^* = \frac{1}{\tilde{\theta}_{hf} \lambda_{ff}}$

$$t^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + (\sigma - 1)\sum_k \frac{X_{hf,k}}{X_{hf}} \left[\lambda_{hf,k} - \lambda_{hf}\right]}$$

• One sector economy (Gross 1987):
$$t^* = \frac{1}{\theta \lambda_{ff}}$$

• Cobb-Douglass across sectors:
$$\bar{t}^* = \frac{1}{\bar{\theta}_{hf}\lambda_{ff}}$$

$$t^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + (\sigma - 1)\sum_k \frac{X_{hf,k}}{X_{hf}} \left[\lambda_{hf,k} - \lambda_{hf}\right]}$$

• One sector economy (Gross 1987):
$$t^* = \frac{1}{\theta \lambda_{ff}}$$

• Cobb-Douglass across sectors:
$$\bar{t}^* = \frac{1}{\bar{\theta}_{hf}\lambda_{ff}}$$

$$t^* = \frac{1}{\tilde{\theta}_{hf}\lambda_{ff} + (\sigma - 1)\sum_k \frac{X_{hf,k}}{X_{hf}} \left[\lambda_{hf,k} - \lambda_{hf}\right]} > \frac{1}{\tilde{\theta}_{hf}\lambda_{ff}}$$

• Step 2: jointly solve for x^* and t^*

• Social planner's problem

 $\max_{t_k, x_k} V_h(Y_h, \mathbf{P_h})$

s.t.
$$\sum_{k} X_{fh,k} = \sum_{k} X_{hf,k}$$

• Step 2: jointly solve for x^* and t^*

• Social planner's problem

 $\max_{t_k, x_k} V_h(Y_h, \mathbf{P_h})$

s.t.
$$\sum_{k} X_{fh,k} = \sum_{k} X_{hf,k}$$

Proposition 2: the optimal trade tax is composed of uniform tariff, t^* , and sector-specific export taxes such that:

$$(1+t^*)(1+x_k^*) = \frac{1}{\theta_k \lambda_{ff,k}}$$

• Unique *only* up to a uniform tariff, t^* .

Proposition 2: the optimal trade tax is composed of uniform tariff, t^* , and sector-specific export taxes such that:

$$(1+t^*)(1+x_k^*) = \frac{1}{\theta_k \lambda_{ff,k}}$$

• Unique *only* up to a uniform tariff, t^* .

Proposition 2: the optimal trade tax is composed of uniform tariff, t^* , and sector-specific export taxes such that:

$$(1+t^*)\left(1+x_k^*\right) = \frac{1}{\theta_k \lambda_{ff,k}}$$

- Optimal protection depends on:
 - 1. Sector-level trade elasticity, θ_k
 - 2. Sector-level comparative adv. (implicit in $\lambda_{ff,k}$) special case

- NRTBs: non-revenue trade barriers or *iceberg trade costs*
- All policy instruments available \implies optimal policy includes

1. Zero NRTBs

$$\tau_{fh,k}^* = 0 \ \forall k$$

2. Uniform tariffs + sector-specific export taxes:

$$(1+t^*)(1+x_k^*) = \frac{1}{\theta_k \lambda_{ff,k}}$$

• What if RTBs are unavailable?

Proposition 3: when RTBs are unavailable, the optimal NRTBs are *non-uniform* and *strictly positive* in sectors where θ_k is sufficiently large.

• Optimal **U.S.** NRTBs positive in *Wheat, Rice, Diary,* and *Apparel* sectors.

• What if RTBs are unavailable?

Proposition 3: when RTBs are unavailable, the optimal NRTBs are *non-uniform* and *strictly positive* in sectors where θ_k is sufficiently large.

• Optimal **U.S.** NRTBs positive in *Wheat, Rice, Diary,* and *Apparel* sectors.

• What if RTBs are unavailable?

Proposition 3: when RTBs are unavailable, the optimal NRTBs are *non-uniform* and *strictly positive* in sectors where θ_k is sufficiently large.

• Optimal U.S. NRTBs positive in *Wheat, Rice, Diary,* and *Apparel* sectors.

Policy Interdependence

• Proposition 4: import tariffs are complementary: graph

$$t_1 \downarrow \Longrightarrow t_2^*(t_1) \downarrow$$

• Proposition 5: import tariffs cannot substitute export taxes/subsidies

Welfare
$$(\boldsymbol{x}^* \mid \boldsymbol{t} = 0)$$
 > Welfare $(\boldsymbol{t}^* \mid \boldsymbol{x} = 0)$

• Proposition 4: import tariffs are complementary: graph

$$t_1 \downarrow \Longrightarrow t_2^*(t_1) \downarrow$$

• Proposition 5: import tariffs cannot substitute export taxes/subsidies

Welfare
$$(\boldsymbol{x^*} \mid \boldsymbol{t} = 0)$$
 > Welfare $(\boldsymbol{t^*} \mid \boldsymbol{x} = 0)$

Quantitative Analysis

• We have established that GE effects matter, *theoretically...*

•but how important are GE effects, *quantitatively*?

- Home: US
- Foreign: ROW
- $\bullet~33~{\rm sectors}$
- θ_k 's from micro-level estimation.
- $\bullet\,$ Match sector-level $production,\,trade,\,{\rm and}\,\,expenditure\,{\rm shares}.$

Unrestricted Optimal Tax Schedule

Optimal Tax Schedule when Export Policy is Restricted

Partial Liberalization

These policies have non-trivial welfare effects.

• US:

- Optimal import policy $\implies 3.48\%$ welfare gains
- Allow export policy $\implies 0.07\%$ higher gains
- China:
 - Optimal import policy $\implies 2.26\%$ welfare gains
 - Allow export policy $\implies 0.20\%$ higher gains

• **Bottomline:** GE effects have important & non-trivial implications for trade policy.

- *Next step:* relax the linear cost assumption.
 - Marry the GE and traditional approaches.
 - Shed light on classical protectionist arguments (Graham 1923)

• **Bottomline:** GE effects have important & non-trivial implications for trade policy.

- *Next step:* relax the linear cost assumption.
 - Marry the GE and traditional approaches.
 - Shed light on classical protectionist arguments (Graham 1923)

- $\theta_k \to \infty \Longrightarrow$ limit-pricing tax formula.
- Uniform tariff \bar{t}^* on import sectors.
- Tax on export sector:

$$(1+\bar{t}^*)\left(1+x_k^*\right) = \frac{\tilde{A}_{h,k}}{\tilde{A}_{f,k}}\tau_{hf,k}w$$

Return

Tariff Complementarity

31/32