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Static Matching Markets
Theory:
[Gale-Shapley, 1962], [Shapley-Shubik, 1971], [Shapley-Scarf, 1971], [Kelso-Crawford, 1982], 

[Roth, 1982, 1984], [Immorlica-Mahdian, 2005], [Hatfield-Milgrom, 2005], [Che-Kojima, 2007], 

[Ostrovsky, 2008], [Kojima-Pathak, 2009], [Kojima-Manea, 2009], [Budish, 2011], [Budish-Che-

Kojima-Milgrom, 2013], [Kojima-Pathak-Roth, 2013], [Hatfield-Kominers-Nichifor-Ostrovsky-

Westkamp, 2013],[Echenique-Lee-Shum-Yenmez, 2013], … 

School Choice:
[Abdulkadiroglu-Pathak-Roth, 2005, 2009], [Abdulkadiroglu-Pathak-Roth, 2005, 2006], [Pathak-

Sonmez, 2013], [Abdulkadiroglu-Angrist-Dynarski-Kane-Pathak, 2011], …

Kidney Exchange:
[Roth-Sonmez-Unver, 2003, 2005, 2007], [Abraham-Blum-Sandholm, 2007], [Unver, 2010], 

[Ashlagi-Roth, 2013], [Ashlagi-Gamarnik-Rees-Roth, 2012], … 

Other Applications
[Peranson-Roth, 1999], [Jolls-Posner-Roth, 2001], [Sonmez-Switzer, 2013], [Che-Koh, 2014], 

[Pycia-Unver, 2014], … 

Given a set of agents

Find matching algorithms with some desirable properties:

Stability
Efficiency 

Strategy-proofness
…
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The Static Question

Gale-Shapley (1962):

Which agents to match?

“The match is made, and all is done!”
The Taming of the Shrew, William Shakespeare
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Dynamic Matching Markets

The composition of options is endogenously 
determined by the matching algorithm

Foster Care



A New Question

Which agents to match?

(Widely studied)

When to match agents?

This Talk

6



Motivating Example: Kidney Exchange
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Biological compatibility:



Value of Waiting: More Information

Next period
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Value of Waiting: More Information

Next period
(urgent need)
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2- Agents’ urgency of needs
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2 3

1- Future trade network (i.e. new matching opportunities) 



Questions about Timing

• How significant is the (option) value of waiting?

• What is the optimal waiting time?

• What kind of information is valuable?

• Do agents have incentive to misreport something?
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Timing in Kidney Exchange

Daily Weekly Monthly Quarterly
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This Paper: A New Model

• Agents arrive and depart continuously over time

• Explicit modeling of the matching network 

• A central planner observes the network, and agents 
who are about to depart, and continuously matches 
agents

• The goal is to maximize social welfare
12



1- Value of waiting can be very large

• Waiting thickens the trade network (i.e. provides liquidity)

• So, we can react to urgent cases with high probability

13

Urgent

This Paper: Main Findings



2- Information of agents’ urgency of needs is highly 
valuable

– The planner can be patient with respect to those who are 
not in urgent need, thus maintain market thickness.

3- Incentive-Compatibility: When urgency information is 
private, we design a dynamic mechanism (without 
transfers) to extract it.
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This Paper: Main Findings
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Related Literature (Dynamic)

• See the related work section of the paper
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Outline

• Setup
– A Model of Dynamic Matching
– Designing Matching Algorithms

• Main Results
– Value of Waiting
– Value of Information & Mechanism Design

• Extensions
– Welfare under Discounting and Optimal Waiting Time
– Increasing Trade Frequency

• Concluding discussions
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Model

• Agents arrive continuously with rate m

• There is an acceptable transaction between any two 

agents with i.i.d probability p

• Each agent gets critical independently with rate 1

• Agents depart when

– get matched

– get critical and perish
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Model: Illustration
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Model: Two Key Parameters

• Agents arrive continuously with rate m

• There is an acceptable transaction between any two 

agents with i.i.d probability p

• Each agent gets critical indep. with rate 1

20

dºm×p

Proxy for average degree (or network sparsity)

(from now on: p = d / m)



The Planner observes:

• Set of agents in the pool (nodes)

• The set of acceptable transactions (edges)

• The Planner observes critical agents. (relax later)

• A Dynamic Matching Algorithm:  Γ: G(t)  M

G(t): Trade 
Possibilities 
Network

c

A set of disjoint edges
(possibly empty)

Matching Algorithm
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Matching: Illustration
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Definition. For an algorithm ALG, target time T,

Goal

Suppose waiting cost is zero. (relax later)

Minimize expected fraction of perished agents.

Agents who leave unmatched

Loss(ALG,T):=
E[#	of	perished	agents]

m	×	T

(Expected) # of agents 
who arrive by time T 23



A Markov Decision Problem

# of networks on on n nodes ≈ 2O(n^2)

Computationally Complex
24

MDP

Stochastic 
model

Matching 
algorithm

Objective

function



Designing Matching Algorithms:
Towards Optimum
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Simple Local Matching Algorithms

1- Greedy Algorithm: Match agents upon their 
arrival to a random neighbor (if any).

2- Patient Algorithm: Match agents when they get 
critical to a random neighbor (if any).
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Patient chooses the optimal time to match an agent.

But it is naïve in optimizing over the network structure.

1

1 4

4
3

3 4

2

Patient: Smart in ‘When’, Naïve in ‘Who’
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• Concluding discussions
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Comparing Algorithms

For this talk: (all are carefully discussed in the paper)

– Steady State

– Relatively large values of m

– d > 2
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Loss
0

GreedyPatientOPT Patient

Gains from
optimal timing 
(being patient)

Gains from
optimizing over 

the network



Value of Waiting

Theorem: In steady state, for large values of m,

1:    Loss(Greedy) ≥ 1/(2d+1)

2:    Loss(Patient) ≤ e-d/2/2

As a result, 

Loss(Patient) ≤ (d + 1/2) . e-d/2 . Loss(Greedy)

For d=8,

Loss(Patient) ≤ 0.17 . Loss(Greedy)
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Timing vs. Optimization

Theorem: In steady state, for large values of m,

e-d/(d+1) ≤ Loss(OPT) ≤ Loss(Patient) ≤ e-d/2/2

d = 8, 

Loss (%)GreedyPatient

8.50.9
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Most of the gain is achieved by merely being patient

OPT



Greedy vs. Patient vs. OPT

Loss
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Proof Ideas
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The graph of agents (pool) is always an empty graph

Perishing rate = criticality rate . 1 = pool size

Greedy: Composition of Market
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Patient: Composition of Market

The pool is always Erdős–Rényi with parameter d/m 

Perishing rate = pool size . (1 – d/m)pool size - 1

35

P(# matches = 0)



Bounding Losses

Suppose Zt ≈ E(Zt) (pool size is highly concentrated) 

Loss ≈ E(Zt ).(1-d/m) E(Zt ) – 1  / m 

E(Zt) ≥ m/2

Loss ≤ e-d/2 / 2
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Perishing rate

Arrival rate

Loss ≈ E(Zt ) . 1 / m

E(Zt) ≥ m/(2d+1)

Loss ≥ 1/(2d+1)

Perishing rate

Arrival rate

Patient

Greedy



Key Findings, So Far

1- Patience can be highly valuable:

Loss(Patient) ≤ (d+1/2) . e-d/2 . Loss(Greedy)

2- Most of the gain is achieved by being patient.

45

“How poor are they that have not patience!

What wound did ever heal but by degrees?”

Othello (II, iii, p376)

William Shakespeare
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Value of Information

Criticality information and waiting are complements.

Theorem: Without criticality information,

1/(2d+1) ≤ Loss(OPT) ≤ Loss(Greedy) ≤ ln(2)/d
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GreedyPatient

0 OPT
(without criticality information)More Information



# of agents with no 
acceptable transactions

Perishing rate . T 
= EOPT(Zt) 

. T

Threshold pool size
= m/(2d+1)

Loss(OPT)³
m/(2d+1)

m
=1/ (2d+1)

OPT Performance

EOPT(Zt): expected value of pool size under OPT

EOPT(Zt)

QED.
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# of agents 
who perish



Information Structure and Utilities

Information Structure:

• Agents observe: 

• When they are critical

• Underlying model parameters (m, d, 1)

• Do not observe the exact trade network

• Planner observes:
• The exact trade network

• Does not observe when agents are critical
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e-r	×	s(a)

0
u(a):= If a is matched

Otherwise

Discount rate Time spent in pool



A Dynamic Mechanism

Patient-Mechanism: 

- Ask for agents’ departure times. 

- When an agent announces getting critical, match 

her to a random neighbor. 

- If she has no neighbors, never match her again.
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Incentive Compatibility

Theorem. There exists a r1 > 0 such that for any

r ≤ r1, the truthful strategy profile is an ε-Nash 

equilibrium for Patient-Mechanism, where ε 0 

as m ∞.
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Continuation Value

Problem: By being in the pool, agents learn about its 
distribution and update their beliefs.

Solution: Show that agents’ posterior beliefs cannot go 
outside of the “concentration interval”. 
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Criticality timeArrive to the pool

Utility = 
Pr(# of matches ≥ 1)

Utility = 
Pr(# of matches ≥ 1)

time

Continuation value:
Get matched to a critical agent



Hard to Commit: A New Punishment

53

Can we commit to kick agents out if they lie?

Falsely reports being criticalKick out?

No other matches

Different Punishment

If an agent lied, keep her in the pool, but assign the 

lowest priority to her when a critical agent has 

multiple neighbors.

Waiting cost
0 r2r1



Summary of Findings
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Urgency of 
agents’ needs 
information?

Market thickness is 
highly valuable

Market thickness 
does not help

Patient algorithm is 
almost optimal

Greedy algorithm is 
almost optimal

YESNO

Incentive-Compatible Dynamic Mechanism

Loss is exponentially 
small in d

Loss is fractionally 
small in d



Reasons to Be Greedy

• Waiting cost is high

• No information about agents’ urgency of needs

• If p is very small or very large, Greedy and Patient’s 
performances are close. (extreme cases: p=0 or p=1)
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Key Findings

• When composition of market is a function of matching 
policy, market thickness (liquidity) is a key concern

• The information of urgency of agents’ needs is very 
valuable, and it can be extracted with simple mechanisms 
without transfers

• The optimal waiting time is decreasing in waiting cost, 
arrival rate of agents, and match probabilities
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A Lesson for Kidney Exchange

Multi-hospital issues: “Greedy” behavior of hospitals is 
very costly.

Hospital 1 Hospital 2Exchange Pool
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Assumption: Ex ante Homogeneous

In a multiple type model, tie breaking matters more. 
[Akbarpour, Nikzad, Rees, Roth, 2015 (working paper)]

Hard to Match

Easy to Match

65



Much Remains to Be Done

• Dynamics are important in many markets:

• We showed: 
– Timing can be a first-order concern

– Dynamic networked markets can be analytically studied by 
exploiting tools from algorithm design and stochastic processes 

• Much work remains to be done: 
– Decentralized markets and prices 

– Platform competition

– Dynamic stability
66



Last Policy Implication

67

So, drink more water to 
prevent kidney failure!

Thank you!

Even the optimal algorithm cannot match all patients…



Utility and Urgency of Needs
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tUrgency

1

Utility of Getting Matched
Prediction of 
kidney failure

Kidney fails

Vascular access
failure
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Patient Pool Size Markov Chain
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m

No closed form expression for stationary distribution ! 
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Patient Pool Size Distribution
m

2
£ Z*

If Zt is highly 
concentrated
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Lemma: For any ε > 0, there exist a Z* > m/2 such 

that:

Pr(Z* -m
1

2
+e

< Z
t
< Z* +m

1

2
+e

) m®¥¾ ®¾¾ 1

Patient Concentration Lemma
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Patient Concentration Proof
Z*π(z)

z

p (Z* +d +1)/p(Z* +d)£1-
1

m

p(Z* +d)

p(Z* +d +1)

+1
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m
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2
+e

» e-me

®	0 QED!
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Planner’s Trade-off

• Ideally, the planner aims to maximize: 

The probability that a random agent has at least 1 edge

• This is maximized by waiting and increasing pool size.

• But waiting is costly.

=1-(1-
d

m
)pool	size

Market Thickness
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Increasing d and Market Thickness
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First show that, τmix(ε) ≤ O( log(m) . log(1/ε) ).

π: stationary distribution of the pool size

Eπ(Zt): expected value of the pool size

Lemma: As T and m grow,

Loss(Patient) ≤ e-d/2 / 2

Lemma: For any T > 0 and  ε > 0, 

Loss(Patient) ≤ e-d/2 / 2 + τmix(ε)/T + ε . m / d2

Upper Bounding the Patient 
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Definition. Let π be the stationary distribution of 

the Markov chain and zt be its distribution at time t, 

then the mixing time of this chain is defined as:

t
mix
(e)= inf 	{t : z

t
-p

TV
:= p (k)-z

t
(k) £e

k=0

¥

å }

Mixing Time and Total Variation
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Smart Patient
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Hazard Rate
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