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Motivation and Inspirations

Design novel statistical learning techniques to model the
complexity of large datasets.

I Curse of dimensionality → Blessing of dimensionality

I Relaxing unrealistic assumptions of the classical models

I A resurgence in the field of machine learning & neural networks

I Real world series are rarely purely linear or nonlinear



Question

Is it possible to forecast with a high-dimensional panel of predictors
while considering nonlinear dynamic among variables?

I Curse of dimensionality

I Feature extraction (i.e, Factor Models - Stock and Watson (2002,2006); Bai
and Ng (2002); Deistler and Hamman (2005); Forni, Hallin, Lippi, and
Reichlin (2005); Lam and Yao (2012), and several others.)

I Feature selection (i.e, Ridge - Hoerl and Kennard (1970); LASSO -Tibshirani
(1996); Elastic Net - Zou and Hastie (2005), Bayesian regression - Mol,
Giannone, and Reichlin(2008); Selecting variables -Bai and Ng(2008a))

I To model complex and nonlinear data

I Parametric, semiparametric and nonparametric nonlinear regression models
(i.e, TAR & STAR - Teräsvirta, Tjøstheim, and Granger (2010); Neural nets
- Kuan and White (1994), Teräsvirta, van Dijk, and Medeiros (2005),
Mederios, Träsvirta and Rech (2005) and Varian (2014))



ML for complex and nonlinear phenomena

I However linear regression models are adequate to explain many
phenomena in the world, most important economic and financial
phenomena are complex and nonlinear in nature.

I Parametric nonlinear regression models:
I The shape of the functional relationships between the response and the

predictors are predetermined
I Can take the form of a polynomial, exponential, trigonometric, power,

or any other nonlinear function

I Nonparametric and semiparametric models :
I In many situations, the relationship is unknown
I The shape of the functional relationships between variables can be

adjusted to capture unusual or unexpected features of the data
I Artificial Neural Networks, Kernel-based methods & Tree-based

regression models



I Building accurate forecast models in economics and finance is a complex
and challenging task.

I In this talk: we will see how to apply appropriate and novel techniques
to design data driven forecast models in few steps from data mining and
model selection to forecasts evaluation and comparison. Each step has its
own tricks!



Big Data

I An important step in designing modern predictive models is to cope
with high-dimensional data, which contain large numbers of correlated
variables and present complex properties.

I “Big data” is both an increase in the number of samples collected over
time, and an increase in the number of potential explanatory variables
and predictors that are simultaneously measured.

I When using nonlinear tools such as artificial neural networks. Most
nonlinear models involve more parameters than the dimension of the
data space which may result in a lack of model identifiability,
instability, and overfitting.



Nonlinearity:

I A linear stochastic process can be represented in terms of an arithmetic
sequence of independent and identically distributed random variables
in time domain or the power spectrum in the frequency domain. Any
stochastic process that does not satisfy the condition of the those
representations is said to be nonlinear.

I Nonlinearity may arise in different ways. The characteristic of
nonlinear time series such as higher-moment structures, time-varying
variance, asymmetric fluctuations, thresholds and breaks can be only
modelled by an appropriate nonlinear function like f(.) and a linear
process is not adequate to model these features.

I Before we apply nonlinear techniques, such as those inspired by
machine learning theories, to real-world financial data, it is logical to
first ask if the use of such techniques is justified by the data.



Nonlinearity in & Between (Financial) Series



Forecasting with Factor Models

Linear (statistical) factor models:

Given a high-dimensional matrix of stationary time series (i.e. financial
returns), denoted by xit (i = 1, ...,m, t = 1, ..., T )

I Factor estimation step

(PCA, MLE, Kalman-Filter,...) PCA finds the projection such that the
best linear reconstruction of the data is as close as possible to the original
data.

xit = λ′iut + ξit

I Forecasting step

(ŷT+1|T ) = x̂iT+1|T = λ̂′iuT+1|T



Neural Networks: one of the oldest and one of the newest areas

I Formulation of a feedforward neural network model with one hidden layer
can be generalized to

yt = Φ(x;w) = φk

[∑
j→k

φj

(∑
i→j

xitwij

)
wjk

]
+ εt

where Φ describes network by a vector function. We associate subscript i
with the input layer, subscript j with the hidden layer, and subscript k
with the output layer.

I To show that the neural network models can be seen as a generalization of
linear models, we assumed that the output transfer function {φk(.)} is
linear, then the model becomes

yt =
∑
j→k

φj

(∑
i→j

xitwij

)
wjk + εt



Model 1 - Nonlinear Factor Models

I Factor estimation using neural network PCA (for details see;
Oja (1982); Kramer (1991); Hsieh (2004); Hinton and
Salakhutdinov (2006))

Figure: Schematic diagram of the standard autoassociative neural network architecture
for calculating the nonlinear principal component analysis (NLPCA).



Model 1 - Nonlinear Factor Models

I Factor estimation using neural network PCA
PCA can be nonlinearly generalized NLPCA/Autoencoders (Bottleneck,
Autoassociative)
An autoencoder is a neural network which is trained to replicate its input
at its output. Autoencoders can be used as tools to learn deep neural
networks. Training an autoencoder is unsupervised in the sense that no
labeled data is needed. The training process is still based on the
optimization of a cost function. The cost function measures the error
between the input and its reconstruction at the output. An autoencoder is
composed of an encoder (mapping) and a decoder (demapping). The
encoder and decoder can have multiple layers.
Here, both mapping ut = φ(x)(xt) and demaping x̃t = φ(u)(ut) functions
are approximated by neural nets.

The loss of information is again measured by ξt = xt − x̃t, and analogous
to PCA, the functions φ(x) and φ(u) are selected to minimise ||ξ||.
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Model 1 - Nonlinear Factor Models

I Nonlinear forecasting step

Linear Factor Model


x̂iT+1|T = β̂′iûT

x̂iT+1|T = λ̂′iuT+1|T

x̂iT+1|T = λ̂′iuT+1|T + ξ̂iT+1|T

Nonlinear Factor Model


x̂iT+1|T = Φ(û

(NL)
T )

x̂iT+1|T = φ
(uNL)
k (φ

(uNL)
j (û

(NL)
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j (û

(NL)
T+1|T )) + ξ̂

(NL)
iT+1|T



Empirical Analysis

I The data are daily returns of m = 418 equities on the S&P 500 index from
04.01.2005 through 31.12.2014.

I We calculate 1-step (here one day) ahead forecasts of targets (x̂it+1|t return
series to be forecast) based on a rolling (moving) estimation window.



Fraction of the variance explained by the first three PCs



Nonlinearity Between (Financial) Series



Comparing the forecastability of alternative quantitative
models

I Time series approach (R2, RMSE, MAE, Hit Rate, Mean Profit per Day, DM-test ...)

RMSE =
√

1
N

∑N
t=h+1(y(t)− ŷ(t))2

Hit−Rate = |{t|y(t)ŷ(t)>0,t=1,..,N}|
|{t|y(t)ŷ(t)6=0,t=1,..,N}|

how often the sign of the return is correctly predicted. HR>0.5 better than
RW

I Trading simulation approach (Profit of a portfolio with one asset or more than one assets)

I In time series approach, models aim to minimise Out-of-sample forecasting
errors, however, the model with minimum statistical errors does not
necessarily guarantee maximised trading profits, which is often deemed as
the ultimate objective of financial application.

I Since the ultimate goal of investment is to make profit, the best way to
evaluate alternative financial forecast model is therefore to evaluate their
trading performance.

I Benchmark for trading simulation:
I The performance of AR(1), RW or the stock market index during the same

out-of-sample period.



Comparison of linear and nonlinear factor models and the benchmark models based on the

performance of the portfolio simulation

(a) Linear and nonlinear factor models against an invest-
ment on S&P 500 index



Comparison of linear and nonlinear factor models and the benchmark models based on the

performance of the portfolio simulation

(b) Linear and nonlinear factor model against Random
walk



Comparison of linear and nonlinear factor models, and the models with only one nonlinear

step based on the performance of the portfolio simulation

Portfolio Return Sharp Ratio

Linear FM 7.51% 17.4927

Nonlinear FM 7.87% 25.0019

Nonlinear in factor estimation step 7.61% 18.6259

Nonlinear in forecast equation step 6.83% 17.8577



Comparison of linear and nonlinear factor models based on the performance of the portfolio

simulation during an out-of-sample period

Table:
Portfolio Return Sharp Ratio

FM(ut) 4.35% 9.1770

FM(ut+1) 7.51% 17.4927

NLFM(ut) 7.87% 25.0019

NLFM(ut+1) 7.41% 18.8963



Comparison of linear and nonlinear factor models and the Hybrid model based on the

performance of the portfolio simulation during out-of-sample period

Table:
Portfolio Return Sharp Ratio

Linear FM 7.51% 17.4927

Nonlinear FM 7.87% 25.0019

Hybrid model 9.32% 19.2152



Model 2 - Shrinkage Estimation of Skip-layer Neural
Networks

It is challenging to determine if complex real world time series behave in a
linear or nonlinear fashion. The experimental results from different

linearity tests suggest that the real world series are rarely purely linear or
nonlinear. They consists of both linear and nonlinear patterns. We allow
that series are composed of a linear structure (Lt) plus a nonlinear
component (Nt).

yt = Lt +Nt

Two different approaches to model and forecast time series with both
linear and nonlinear patterns are imaginable. Hybrid methodology which,
first we estimate the linear component using a linear model and then we
collect the residuals obtained from the fitted model êt = yt − L̂t. Finally
we let a nonlinear approach (i.e, GARCH family models, neural nets) to
model the residuals which may contain information about nonlinearity.



Model 2 - Shrinkage Estimation of Skip-layer Neural
Networks

Model includes both linear and nonlinear structures. This is a
high-dimensional learning approach including both sparsity L1 and
smoothness L2 penalties, allowing high-dimensionality and nonlinearity to
be accommodated in one step.

yt = Φ(x;w) =
∑
i→k

xitwik +
∑
j→k

φj

(∑
i→j

xitwij

)
wjk + εt,

where Φ describe network by a vector function. We associate subscript i
with the input layer, subscript j with the hidden layer, and subscript k
with the output layer. xit = (x1t, x2t, ..., xmn) is the value of the ith input
node, which can be a constant input representing biases, a matrix of
lagged values of yt and some exogenous variables. φj(.) and J are
activation functions and number of neurons used at the hidden layer.



Model 2 - Shrinkage Estimation of Skip-layer Neural
Networks

xit

xmt
j

k

wij

wik

wjk

Figure: A single-hidden-layer neural network with skip-layer connections



Model 2 - Shrinkage Estimation of Skip-layer Neural
Networks

Network parameters are the solutions to the following optimization problem:

w∗ = argmin
w

E(w) +
λ2

2

∑
i→k

w2
ik + λ1(

∑
i→j

|wij |+
∑
j→k

|wjk|)

Then the learning rule for the weights becomes:
wnew
ik = wold

ik − η(∂E(w)
∂wik

+ λ2 w
old
ik )

wnew
ij = wold

ij − η(∂E(w)
∂wij

+ λ1 sgn(wold
ij ))

wnew
jk = wold

jk − η(∂E(w)
∂wjk

+ λ1 sgn(wold
jk ))

The optimal λ can be found by a gradient descent scheme instead of setting
that manually using grid search or cross-validation (Larsen et al.(2012) and
Maclaurin et al.(2015)).

λnew = λold − γ ∂EV

∂λ
(ŵ(λold))



Comparison of one-shot model, and the competing models based on the performance of the

portfolio simulation

(a) One-shot model against competing models



Nonlinearity: we let the data speak for themselves as much as possible

I Classification of different statistical approaches which are testing
nonlinearity in time series is a challenging task as they entail
consideration of various types of nonlinear dynamics and are coming
from different disciplines. Granger and Tersvirta (1993), Tersvirta,
Tjstheim and Granger (1994) and recently Giannerini (2012)

I The main idea behind various linearity tests is a hypothesis testing
procedure. Every hypothesis test starts with a null hypothesis (H0)
and an alternative (H1). In general, the null hypothesis of linearity
tests states that observed series are generated by Gaussian linear
stochastic processes against an alternative hypothesis that states
observed series are rooted in nonlinear dynamics.

I To be more precise, H0 tests the hypothesis that the time series is
completely specified by its first and second order statistics (i.e. mean,
variance, and autocorrelation or its frequency domain counterpart,
power spectrum) .
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