Adverse Selection and Market Design

Ali Shourideh

September 4th, 2016

Khatam University, Tehran, Iran

Introduction ____

- Much of last lecture focused on private value problems: valuation of the seller and the buyer are uncorrelated
- Many markets are the opposite: valuations of buyers and sellers are perfectly correlated:
 - \circ <u>Used Cars</u>: classic example
 - <u>Insurance</u>: value of insurance to the buyer depends on risk accident, heart attack, death which determines the cost to the seller; information is private to the buyer
 - <u>Asset market</u>: some traders know more about the value of a security; underwriter of a mortgage backed security knows more about the underlying mortgages
- Key issue: how to organize decentralized trade and allow for competition

Outline _____

- Discuss basic models of adverse selection and decentralized trade
- Some applications to insurance and finance
- Some empirics

A Basic Model of Trade _____

• Goods:

• Two goods: one indivisible good; one divisible numeraire

- Players:
 - Two principals with valuation of the indivisible good: v(c)
 - $\circ~$ One agent with valuation of the indivisible good: c
- Common value assumption: $\nu'(c) > 0$
- Asymmetric information: $c \sim F(c)$; privately known by the agent
- v(c) > c: Full trade optimal under full information

A Basic Model of Trade ____

- Timing:
 - $\circ~$ Principals make price offers
 - $\circ~$ Agent makes a choice
- Agent's choice: choose the higher price

 $\operatorname{sell} \Leftrightarrow \mathsf{max}\{p_1,p_2\} \geqslant c$

- In equilibrium:
 - \circ prices are equal: $p_1 = p_2$.
 - $\circ~$ Profits are zero:

$$\mathsf{p} = \mathbb{E}\left[\mathsf{v}(c)|c\leqslant\mathsf{p}\right]$$

Equilibrium _

Equilibrium _____

- The precise nature of the equilibrium depends on F(c) and gains from trade v(c) c.
- If gains from trade are large relative to values of ${\bf c}$ then everyone trades;
- If gains from trade for low **c** are small, it is possible that all trades break down Akerlof's original example
- Note: Equilibrium is (constrained) efficient; a central planner that is subject to the same information constraint cannot improve upon this equilibrium

Product Design _____

• Adverse selection: good types are excluded (even though it is constrained efficient)

• Insurance: low-risk individuals are excluded

- The 0-1 nature of trade leads to exclusion.
- Perhaps allowing for new products can lead to more trade:
 - perhaps low-risk individuals are willing to accept less coverage in return for a lower price/premium

Product Differentiation

- Principals offer products of the form $\{x, p(x)\}_{x \in [0,1]}$
- Payoffs:

Agent: xp(x) + c(1-x)Principal: v(c)x - xp(x)

- Interpretation of x:
 - insurance: level of coverage; copay
 - finance: retention of mortgage backed securities; quantity traded
- choice of agent: $x^*(c)$

Equilibrium _____

- Result 1: Any equilibrium must be separating, i.e., $\boldsymbol{x}^*(\boldsymbol{c})$ is one-to-one
 - Idea of proof: If not then a principal is making money on some types and a competitor can come in and target those types only
- Result 2: $p(x^*(c)) = v(c)$, i.e., profits are zero type by type
- Result 3: $x^*(c)$ must satisfy

$$x(\underline{c}) = 1; x^{*}(c) \frac{\nu'(c)}{(x^{*})'(c)} + \nu(c) = c$$

• Note: $(x^*)'(c) < 0$.

• Result 4 (Riley, 1979): Suppose that F(c) is continuous, then the divisible good model has no equilibrium.

- Result 4 (Riley, 1979): Suppose that F(c) is continuous, then the divisible good model has no equilibrium.
 - $\circ\,$ idea of proof: offer a pooling contract targeted to an interval $[\underline{c},c_1]$ they would all prefer it; principal can cross-subsidize and make money

- Result 4 (Riley, 1979): Suppose that F(c) is continuous, then the divisible good model has no equilibrium.
 - $\circ\,$ idea of proof: offer a pooling contract targeted to an interval $[\underline{c}, c_1]$ they would all prefer it; principal can cross-subsidize and make money
- Key problem with this equilibrium concept: no cross-subsidization can be supported

- Result 4 (Riley, 1979): Suppose that F(c) is continuous, then the divisible good model has no equilibrium.
 - $\circ\,$ idea of proof: offer a pooling contract targeted to an interval $[\underline{c}, c_1]$ they would all prefer it; principal can cross-subsidize and make money
- Key problem with this equilibrium concept: no cross-subsidization can be supported

- Result 4 (Riley, 1979): Suppose that F(c) is continuous, then the divisible good model has no equilibrium.
 - $\circ\,$ idea of proof: offer a pooling contract targeted to an interval $[\underline{c},c_1]$ they would all prefer it; principal can cross-subsidize and make money
- Key problem with this equilibrium concept: no cross-subsidization can be supported
- There always exists a mixed-strategy equilibrium: always inefficient!

Market Design Question ____

- Can we come up with market mechanisms that allow for cross-subsidization?
- Caveats in the equilibrium concept:
 - agent can costlessly switch between principals
 - principals can costlessly create products
 - one-agent assumption: no interdependence between terms offered to different types of agents.
- I will talk about relaxing some of these assumptions: starting with switching costs for the agent

Agent's Switching Costs ____

- Based on joint paper with Lester, Venkateswaran and Zetlin-Jones (2016)
- Suppose with some probability the agent can only trade with one of the principals

 $\mathbb{P}(\text{can trade with both}) = \pi; \mathbb{P}(\text{can trade only with i}) = \frac{1-\pi}{2}$

- For simplicity $c \in \{c_l < c_h\}$
- Principals do not know the agent's trading opportunities: Have to offer the same terms to captive and non-captive individuals

Structure of Equilibrium ____

- Result 0: There is no pure strategy equilibrium
 - principals can always guarantee positive profits by targeting a captive agent; At the same time like to increase prices to attract a non-captive agent
 - $\circ~{\rm Principals}$ mix over menus: (x_l,p_l,x_h,p_h)
 - Can summarize each menu with the vector of utilities to each type $(\mathfrak{u}_l,\mathfrak{u}_h)$
 - $\circ~{\rm Equilibrium}$ distribution of utilities $F_l(\mathfrak{u}_l),F_h(\mathfrak{u}_h)$

Switching Costs: Results _____

- Result 1: terms of trades are positively correlated across types: more generous contracts to high types are also generous for low types
- Result 2: Depending on structure of competition and adverse selection contracts can be cross-subsidizing or not.

Equilibrium Contracts

π

Equilibrium Contracts _____

Cross-subsidization equilibrium may feature:

Equilibrium Contracts _____

Cross-subsidization equilibrium may feature:

• Full Separation: $0 < x_h < 1$ a.e.

Equilibrium Contracts _____

Cross-subsidization equilibrium may feature:

- Full Separation: $0 < x_h < 1$ a.e.
- Full Pooling: $x_h = 1$ a.e.

Equilibrium Contracts _

Cross-subsidization equilibrium may feature:

- Full Separation: $0 < x_h < 1$ a.e.
- Full Pooling: $x_h = 1$ a.e.
- Mix: pool below \bar{u}_l , separate above

Equilibrium Contracts

Cross-subsidization equilibrium may feature:

- Full Separation: $0 < x_h < 1$ a.e.
- Full Pooling: $x_h = 1$ a.e.
- Mix: pool below \bar{u}_l , separate above

More competition (higher π) \rightarrow less pooling

• gains to separation increase in π

 $\operatorname{Milder}\operatorname{adv}\operatorname{sel}\left(\operatorname{higher}\,\mu_h\right)\to\mathit{more}\operatorname{pooling}$

increased incentives to trade with h

Switching Costs: Results _____

- Result 1: terms of trades are positively correlated across types: more generous contracts to high types are also generous for low types
- Result 2: Depending on structure of competition and adverse selection contracts can be cross-subsidizing or not.
- Result 3: When $\mathbb{P}(c_h)$ is low, welfare is maximized at $\pi \in (0, 1)$
 - With π close to 1, competition is intense for high types which leads to high prices for them and low quantities (in order to keep low types from choosing a high price contract!)

Application to Financial Markets

Application to Financial Markets _____

- Some details first
- What is our plain vanilla model of securities trading? Lucas-Breeden - Stock markets are Walrasian:
 - There is a single price!
 - $\circ~$ agents take it as given.
 - $\circ~$ they can trade without limits
- How does it work in practice?

Financial Markets ____

- There is no single price: Typical buy and sell prices (ask and bid) are different; large trades are also typically executed away from small trades (dark pools)
- Large trades do not necessarily have the same price as small trades: traders order size affect prices
- Short-selling is typically subject to borrowing limits

Financial Markets Design ____

- A lot of securities stocks, options, ETFs trade on electronic limit order book.
- People submit:
 - $\circ~$ limit order: sell (buy) quantity q at any price above (below) p until time t
 - market order: sell (buy) at the best available price

Limit Order Book

Market Liquidity _____

- Liquidity: ease at which you can execute an order
- Bid-Ask spread is a measure of market liquidity

Market Liquidity

Market Liquidity _____

- Liquidity: ease at which you can execute an order
- Bid-Ask spread is a measure of market liquidity
- Where is the spread coming from: two ideas
 - $\circ~$ buyers and sellers are scarce and terms of trade are determined through bargaining less applicable to LOB

Market Liquidity _____

- Liquidity: ease at which you can execute an order
- Bid-Ask spread is a measure of market liquidity
- Where is the spread coming from: two ideas
 - $\circ\,$ buyers and sellers are scarce and terms of trade are determined through bargaining less applicable to LOB
 - OTC Market models: Duffie, Garleanu and Pedersen (2005)
 - $\circ~$ buyers and sellers have private information about the true value of the security
 - Glosten and Milgrom (1984)

Glosten and Milgrom, 1984 _

- A simplified version here
- A security that pays $V \in \{V_L < V_H\}$ at the end of the day with $\mathbb{E}V = \overline{V}$ and $Pr(V = V_H) = \mu$.
- Three sets of agents:
 - Two dealers or market makers: risk neutral and uninformed
 - $\circ~$ Fraction λ of informed traders (I): they know V
 - Fraction 1λ of liquidity traders (L): uninformed, and would like to sell or buy (with equal probability) no matter the quoted price
- Everyone has a unit demand
Glosten and Milgrom, 1984 ____

- Traders arrive uniformly and randomly
- Dealers quote two prices: bid, B the price at which they buy and ask, A the price at which they sell
- Competition among dealers means profits are zero, i.e.,

$$A = \mathbb{E}[V|\text{submitted order} = \text{buy}]$$
$$B = \mathbb{E}[V|\text{submitted order} = \text{sell}]$$

Glosten and Milgrom, 1984 ____

- Result 1: V_H : I buys, V_L : I sells
- Result 2: Bid and Ask:

$$\begin{split} \mathbb{P}(\mathrm{buy}) &= \lambda \mu + (1-\lambda)\frac{1}{2} \\ A &= \mathbb{E}(V|\mathrm{buy}) &= \frac{\lambda \mu}{\lambda \mu + (1-\lambda)\frac{1}{2}} V_{\mathrm{H}} + \frac{(1-\lambda)\frac{1}{2}}{\lambda \mu + (1-\lambda)\frac{1}{2}} \overline{V} \\ B &= \mathbb{E}(V|\mathrm{sell}) &= \frac{\lambda(1-\mu)}{\lambda(1-\mu) + (1-\lambda)\frac{1}{2}} V_{\mathrm{L}} + \frac{(1-\lambda)\frac{1}{2}}{\lambda(1-\mu) + (1-\lambda)\frac{1}{2}} \overline{V} \end{split}$$

0

Glosten and Milgrom, 1984 _____

• Once the order arrives, the dealers update their beliefs

$$\begin{array}{lll} \mu'(\mathrm{sell}) & = & \displaystyle \frac{\mu}{\lambda\mu + (1-\lambda)\frac{1}{2}} \\ \mu'(\mathrm{buy}) & = & \displaystyle \frac{\mu(1-\lambda)}{\lambda(1-\mu) + (1-\lambda)\frac{1}{2}} \end{array}$$

• Result 3:

$$\lim_{t\to\infty}A_t - B_t = 0$$

Glosten and Milgrom, 1984 ____

- It is possible to extend this along various dimensions:
 - Make liquidity traders price sensitive
 - $\circ~$ More general stochastic process for the payoff of the stock
 - Difference in order sizes
- Empirical work: Easley and O'hara try to measure how much trade is due to asymmetric information

Finance Market Design Issues ____

- Liquidity: Search and bargaining vs private information; Lester, Shourideh, Venkateswaran, Zetlin-Jones (2016)
- High Frequency Trading: Trades are executed in the micro second level; some argue that HFT's try to take advantage of market orders by front-running them: Budish, Cramton, Shim, 2015.
- Number of trading platforms exchanges have increased a lot; leading to regulatory complications of how orders should be executed
- Transparency of prices in Over-the-Counter markets

APPLICATION TO INSURANCE Based on joint work with Chari and Zetlin-Jones

PLAYERS

- Continuum of households of unit mass:
 - ★ low risk (good) and high risk (bad): $j \in \{g, b\}$
 - ★ endowment: $\omega \in \{\omega_2 < \omega_1\}$; 2: loss state
 - risk: $\Pr(\omega_1|j) = \pi_j; \pi_g > \pi_b$
 - ★ Population fractions: $Pr(j) = \mu_j : \mu_g + \mu_b = 1$
 - **\star** Concave utility function u(c)
- 2 risk-neutral insurance companies (firms)

ALLOCATIONS, PAYOFFS, ...

- Allocations: $\mathbf{c} = (c_{1j}, c_{2j})_{j \in \{g, b\}}$
- Payoffs:
 - ★ Households:

 $\mathbf{U}_{\mathbf{j}}(\mathbf{c}) = \pi_{\mathbf{j}}\mathbf{u}(\mathbf{c}_{1\mathbf{j}}) + (1 - \pi_{\mathbf{j}})\mathbf{u}(\mathbf{c}_{2\mathbf{j}})$

★ Firms - from type j:

 $\pi_j(\omega_1 - c_{1j}) + (1 - \pi_j)(\omega_2 - c_{2j})$

\star Total firms profits $\Pi^{i}(\mathbf{c})$

INCENTIVE COMPATIBILITY

- Risk types: private information to the household
- Focus on direct mechanisms: $(c_{1g}, c_{2g}, c_{1b}, c_{2b})$
- Incentive compatibility:

 $\pi_{b}u(c_{1b}) + (1 - \pi_{b})u(c_{2b}) \geq \pi_{b}u(c_{1g}) + (1 - \pi_{b})u(c_{2g})$ $\pi_{g}u(c_{1g}) + (1 - \pi_{g})u(c_{2g}) \geq \pi_{g}u(c_{1b}) + (1 - \pi_{g})u(c_{2b})$

• relevant IC: *b* pretending to be *g*

EFFICIENCY

- Notion of efficiency: low risk efficient
 - * Max welfare of g subject to
 - IC
 - resource constraint
 - participation by *b* : must be better off than autarkic full insurance
 - ★ Natural candidate for equilibrium

AUTARKIC FULL INSURANCE

• Autarkic full insurance

$$V_{b}^{\dagger} = \max_{c_{1},c_{2}} \pi_{b} \mathfrak{u}(c_{1}) + (1 - \pi_{b})\mathfrak{u}(c_{2})$$

subject to
$$\pi_{b}(\omega_{1} - c_{1}) + (1 - \pi_{b})(\omega_{2} - c_{2}) \ge 0$$

• For any composition of types

• For any composition of types (λ_b, λ_g)

 $V_{g}^{eff}(\lambda_{b},\lambda_{g}) = \max_{(c_{1j},c_{2j})} \pi_{g} u(c_{1g}) + (1 - \pi_{g}) u(c_{2g})$ subject to $\pi_{b} u(c_{1b}) + (1 - \pi_{b}) u(c_{2b}) \ge \pi_{b} u(c_{1g}) + (1 - \pi_{b}) u(c_{2g})$ $\pi_{b} u(c_{1b}) + (1 - \pi_{b}) u(c_{2b}) \ge V_{b}^{f}$

• For any composition of types (λ_b, λ_g)

 $V_{g}^{eff}(\lambda_{b},\lambda_{g}) = \max_{(c_{1j},c_{2j})} \pi_{g} u(c_{1g}) + (1 - \pi_{g}) u(c_{2g})$ subject to $\pi_{b} u(c_{1b}) + (1 - \pi_{b}) u(c_{2b}) \ge \pi_{b} u(c_{1g}) + (1 - \pi_{b}) u(c_{2g})$ $\pi_{b} u(c_{1b}) + (1 - \pi_{b}) u(c_{2b}) \ge V_{b}^{f}$

• Equivalently defines $V_b^{eff}(\lambda_b, \lambda_g)$

• utilities are homogenous of degree 0 in (λ_b, λ_g)

- utilities are homogenous of degree 0 in (λ_b, λ_g)
- If $\frac{\lambda_g}{\lambda_g + \lambda_b} \leq \lambda^*$ then

- utilities are homogenous of degree 0 in (λ_b, λ_g)
- If $\frac{\lambda_g}{\lambda_g + \lambda_b} \leq \lambda^*$ then
 - ★ least-cost-separating allocation
 - ★ participation constraint binds
 - incentive constraint binds
 - no cross-subsidization; profits are zero on each type

• If $\frac{\lambda_g}{\lambda_g + \lambda_b} \ge \lambda^*$ then
- If $\frac{\lambda_g}{\lambda_g + \lambda_b} \ge \lambda^*$ then
 - ★ participation constraint is slack
 - ★ incentive constraint is binding
 - ★ cross-subsidization:
 - positive profits on *g*
 - negative profits on *b*

- If $\frac{\lambda_g}{\lambda_g + \lambda_b} \ge \lambda^*$ then
 - participation constraint is slack
 - ★ incentive constraint is binding
 - ★ cross-subsidization:
 - positive profits on *g*
 - negative profits on *b*
- Focus only on $\mu_g \ge \lambda^*$

- The functions $V_j^{eff}(\lambda_g, \lambda_b)$:
 - * increasing in $\frac{\lambda_g}{\lambda_g + \lambda_b}$ (constant below λ^*)
 - ★ necessarily discontinuous at (0,0)
 - value at (0,0) is not defined
 - impossible to extend $V_j^{eff}(\lambda_g, \lambda_b)$ to (0,0) in a continuous way

EXTENSIVE FORM GAME

- Insurance companies move first:
 - ★ Offer menus

 $i \in \{1,2\}: \mathbf{c}^{i}(\lambda) = (c_{1l}^{i}(\lambda), c_{2l}^{i}(\lambda), c_{1h}^{i}(\lambda), c_{2h}^{i}(\lambda))$

EXTENSIVE FORM GAME

- Insurance companies move first:
 - ★ Offer menus

 $i \in \{1,2\}: \mathbf{c}^{i}(\lambda) = (c_{1l}^{i}(\lambda), c_{2l}^{i}(\lambda), c_{1h}^{i}(\lambda), c_{2h}^{i}(\lambda))$

Households choose between the two firms

 σⁱ_j(c¹, c²): probability of choosing firm *i* by type *j*

 λⁱ = (λⁱ_g, λⁱ_b) measures of households

• Restriction: menus are independent of λ

- Restriction: menus are independent of λ
- Only possibility for equilibrium:

- Restriction: menus are independent of λ
- Only possibility for equilibrium:
 - ★ separating equilibrium

- Restriction: menus are independent of λ
- Only possibility for equilibrium:
 - ★ separating equilibrium
 - cream-skimming rules out pooling

- Restriction: menus are independent of λ
- Only possibility for equilibrium:
 - ★ separating equilibrium
 - cream-skimming rules out pooling
 - ★ zero profits on each type

- Restriction: menus are independent of λ
- Only possibility for equilibrium:
 - ★ separating equilibrium
 - cream-skimming rules out pooling
 - ★ zero profits on each type
 - ★ least-cost-separating allocations

• $\mu_g \leq \lambda^*$: Unique pure strategy equilibrium; interim efficient

- $\mu_g \leq \lambda^*$: Unique pure strategy equilibrium; interim efficient
- $\mu_g > \lambda^*$: no pure strategy equilibrium exists same as in Riley

- $\mu_g \leq \lambda^*$: Unique pure strategy equilibrium; interim efficient
- $\mu_g > \lambda^*$: no pure strategy equilibrium exists same as in Riley
 - ★ Dasgupta and Maskin (1986):

- $\mu_g \leq \lambda^*$: Unique pure strategy equilibrium; interim efficient
- $\mu_g > \lambda^*$: no pure strategy equilibrium exists same as in Riley
 - ★ Dasgupta and Maskin (1986):
 - mixed strategy equilibrium exists
 - inefficient (interim)

OUR EQUILIBRIUM

Definition. A symmetric equilibrium is defined by a pair of menus $\mathbf{c}^{\mathfrak{i}}(\lambda) : [0,1]^2 \mapsto \mathbb{R}^4$, $\mathfrak{i} = 1, 2$, together with households' strategies $\sigma_i^i : (\mathbf{c}^1, \mathbf{c}^2) \mapsto \Delta(\{1, 2\}^2)$ such that: i. households maximize: given any $\mathbf{c} = (\mathbf{c}^1, \mathbf{c}^2)$ $\sigma_{j}^{i}(\mathbf{c})\left[U_{j}(\sigma_{g}^{i}(\mathbf{c}),\sigma_{b}^{i}(\mathbf{c}))-U_{j}(\sigma_{g}^{-i}(\mathbf{c}),\sigma_{b}^{-i}(\mathbf{c}))\right] \geq 0$ ii. firms maximize $\mathbf{c}^{i} \in \arg\max_{\mathbf{c}^{i}} \Pi(\mathbf{c}(\boldsymbol{\sigma}(\mathbf{c}^{i}, \mathbf{c}^{-i})))$

OUR EQUILIBRIUM

- Households take the choice of other households as given and optimize
- Firms take the decision of households into account; take the decision of other firm as given
- Restrict cⁱ(λ) to be continuous (except at (0,0)) and h.o.d.
 0

MAIN THEOREM

Theorem. The game has a unique symmetric equilibrium that coincides with the low-risk efficient allocation.

PROOF IN STEPS

- Construct equilibrium strategies
- Show result for a restricted set of equilibrium strategies
- General result

MIRROR STRATEGIES

Construct equilibrium strategies from low-risk efficient allocation

$$V_{j}^{*}(\lambda) = \max\left\{V_{j}^{eff}(\lambda), V_{j}^{eff}(\lambda^{c})\right\}, j = l, h$$

where

$$\lambda^{c} = (\mu_{h} - \lambda_{h}, \mu_{l} - \lambda_{l})$$

• Associated menus are given by $c^*(\lambda)$

MIRROR STRATEGIES

- First step: restrict strategies
 - $S = \{c(\lambda); The subgame with (c(\lambda), c^*(\lambda)) has an equilibrium\}$

- First step: restrict strategies
 - $S = \{c(\lambda); The subgame with (c(\lambda), c^*(\lambda)) has an equilibrium\}$

Proposition 1. Consider the restricted game in which each firm offers menus $\mathbf{c} \in S$. Then the low-risk efficient allocation is an equilibrium outcome of the game.

- First step: restrict strategies
 - $S = \{c(\lambda); The subgame with (c(\lambda), c^*(\lambda)) has an equilibrium\}$

Proposition 1. Consider the restricted game in which each firm offers menus $\mathbf{c} \in S$. Then the low-risk efficient allocation is an equilibrium outcome of the game.

- Why restriction: every subgame is a discontinuous non-atomic game:
 - ★ equilibrium does not necessarily exist!
• Idea of proof:

- Idea of proof:
 - Suppose that firm 2 incumbent offers the mirror strategy menu c^{*}(λ)

- Idea of proof:
 - Suppose that firm 2 incumbent offers the mirror strategy menu c^{*}(λ)
 - ★ Firm 1 deviant offers $\hat{\mathbf{c}}(\boldsymbol{\lambda}) \in S$

- Idea of proof:
 - Suppose that firm 2 incumbent offers the mirror strategy menu c^{*}(λ)
 - ***** Firm 1 deviant offers $\hat{\mathbf{c}}(\boldsymbol{\lambda}) \in S$
 - ★ Equilibrium of the subgame represented by $\lambda^1 \neq (0,0)$ at firm 1

★ Must have

★ Must have

★ Must have

 $U_{j}(\hat{\mathbf{c}}(\lambda^{1})) \geqslant V_{j}^{*}(\lambda^{1c})$

* Must have $U_j(\hat{c}(\lambda^1)) \ge V_j^*(\lambda^{1c})$ mirror strategies

* Must have $U_{j}(\hat{\mathbf{c}}(\lambda^{1})) \geqslant V_{j}^{*}(\lambda^{1c}) = \max\left\{V_{j}^{eff}(\lambda^{1c}), V_{j}^{eff}(\lambda^{1})\right\}$ mirror strategies

- * Must have $U_{j}(\hat{\mathbf{c}}(\lambda^{1})) \ge V_{j}^{*}(\lambda^{1c}) = \max \left\{ V_{j}^{eff}(\lambda^{1c}), V_{j}^{eff}(\lambda^{1}) \right\}$ where $V_{j}^{eff}(\lambda^{1})$ where $V_{j}^{eff}(\lambda^{1})$
 - ★ firm 1 cannot make positive profits

Market Design for Insurance _____

- Mutualization is a form of market design
- we assumed all costs of mutualization away: cost of capital goes up
- Market design question: how do we design health exchanges
 Obamacare; similar setups in Netherlands and Switzerland
 - Recent example: Handel, Hendel and Whinston 2015

Empirics of Adverse Selection

Shourideh Adverse Selection and Market Design

Empirics of Adverse Selection_

- Key question: Is there adverse selection in a certain market?
- Maybe from trade volume? Trade volume fluctuates for all sorts of reasons
- Perhaps from cross-sectional implication of the models?

Tests of Adverse Selection in Insurance Markets_

- In all of the models discussed, quantity and risk-types are positively correlated: higher risk individuals purchase more insurance
- Important caveat: what matters for pricing is the information set of insurers; always a concern
- Salanie and Chiappori, 2002: look at young drivers in France (less than 2 years of driving experience)

Test of Adverse Selection ____

• Key regressions - two probits (they also perform fancier non-parametric tests):

 $y_i = \mathbf{1}(X_i\beta + \epsilon_i)$ $z_i = \mathbf{1}(X_i\gamma + \eta_i)$

 $y_i :$ choice of coverage; $z_i :$ occurrence of accident; $X_i :$ individual characteristic

- Theory: with adverse selection ε_i and η_i should be negatively correlated; without it they should not be!
- Result: they are not correlated

Test of Adverse Selection ____

- Finkelestein and McGarry 2006: This result does not mean no adverse selection; need direct tests
- They looked at long-term care insurance: insurance against the risk of going to a nursing home
- They had access to data from a survey: "Of course nobody wants to go to a nursing home, but sometimes it becomes necessary. What do you think are the chances that you will move to a nursing home in the next five years?"
- They show that the answer to this is correlated with the outcome beyond variables observed by the insurance companies

Tests of Adverse Selection

• Run probits again:

$$Prob(CARE = 1) = \Phi(X\beta_1 + \beta_2 B).$$

$$Prob(LTCINS = 1) = \Phi(X\delta_1 + \delta_2 B).$$

• **B**: beliefs about the needs

Tests of Adverse Selection _____

	No controls (1)	Control for insurance company prediction		Control for application
e:		(2)	(3)	(4)
Individual prediction	0.091*** (0.021)		0.043** (0.020)	0.037* (0.019)
Insurance company prediction		0.400***	0.395***	
pseudo-R ²	0.005	0.097	0.099	0.183
N	5,072	5,072	5,072	4,780

TABLE 1-RELATIONSHIP BETWEEN INDIVIDUAL BELIEFS AND SUBSEQUENT NURSING HOME USE

TABLE 2-RELATIONSHIP BETWEEN INDIVIDUAL BELIEFS AND INSURANCE COVERAGE

	No controls (1)	Control for insurance company prediction		Control for application
		(2)	(3)	(4)
Individual prediction	0.086*** (0.017)		0.099*** (0.017)	0.083***
Insurance company prediction		-0.125*** (0.023)	-0.140*** (0.023)	
pseudo-R ²	0.007	0.010	0.019	0.079
N	5,072	5,072	5,072	4,780

Shourideh Adverse Selection and Market Design

Tests of Adverse Selection _____

• Replicating Chiappori-Salanie's Test:

	No controls (1)	Controls for insurance company prediction (2)	Controls for application information (3)
Correlation coefficient from bivariate probit of LTCINS and CARE	-0.105***	-0.047	-0.028
	(p = 0.006)	(p = 0.25)	(p = 0.51)
Coefficient from probit of CARE on LTCINS	-0.046***	-0.021	-0.014
	(0.015)	(0.016)	(0.016)
N	5,072	5,072	4,780

TABLE 3-THE RELATIONSHIP BETWEEN LONG-TERM CARE INSURANCE AND NURSING HOME ENTRY

Shourideh Adverse Selection and Market Design

Tests of Adverse Selection _____

- So how do we make sense of these?
- Multi-dimensional heterogeneity: perhaps low-risk individuals are also highly risk-averse. So they would like to purchase a lot of coverage for a lower probability event