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1 Introduction

We’ll be talking about (determining, but not only, the number of factors in)
static approximate factor models, viz.

Xi,t = φ′iFt + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (1)

where φi and Ft are column vectors of dimension k.

It is an important topic:

• Factor models are a dimension reduction technique that has been around
in the statistical literature since almost one hundred years

– they were originally introduced in the field of psychometrics;

– recent availability of large datasets made them increasingly popular;

– nowadays commonly used by public and private institutions as central
banks and investment banks for analysing large panels of time series;

– you can think of several situations in which a factor model may be
useful in economics: just think of a case in which variables are driven
by few common factors, representing comovements, and idiosyncratic
terms, representing e.g. measurement errors or individual/local fea-
tures:

∗ GDP or inflation could be driven by few factors representing the
business cycle plus some measurement errors;

∗ equity returns which are driven by few factors representing the
market effect plus some factors specific of a given company or
sector;

∗ asset pricing, where extra returns are driven by some factors
which the literature has tried to identify;

∗ forecasting, when you have too many predictors and want to
squeeze them into few ones - e.g. with inflation;

• starting from the seminal contribution by Chamberlain and Rothschild
(1983), many contributions have focused on the case of panel data, where
both N and T are large - see, inter alia, the review of Bai and Ng (2008).

• inference

– certainly one needs to estimate φi and Ft: there are techniques (e.g.
PCA, Kalman filtering, etc...) and I am happy to provide references;

– but, the first step in the analysis of (1) is, arguably, the determination
of the number of common factors, k. All techniques are usually based
on a well-established fact: the first k eigenvalues of the covariance
matrix of the Xi,ts diverge to infinity whereas the other ones stay
bounded. Two main approaches have been developed.
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∗ the first one is based on finding a threshold for the eigenvalues of
the covariance matrix of the Xi,ts, which can be used to decide
which eigenvalues are finite and which ones are not; the infor-
mation criteria proposed by Bai and Ng (2002) belong in this
category;

∗ the second possible approach is based on computing the ratio
of adjacent eigenvalues, again exploiting the fact that such ratio
eventually diverges: this is the rationale employed by Onatski
(2009, 2012) and Ahn and Horenstein (2013), inter alia.

Neither approach is free from problems.

∗ eigenvalue thresholding requires the choice of a penalty function,
as is customary in the context of information criteria (see Bai and
Ng, 2002). However, such choice is not unique:

· it affects at least the finite sample properties of the esti-
mated k; note however that, building on an idea in Hallin
and Liska (2007), Alessi, Barigozzi and Capasso (2010) pro-
pose a robust, data-driven methodology to tune the choice
of the penalty function which works very well in simulations;

· existing techniques also require comparing the goodness of
fit of different versions of (1), for 1 ≤ k ≤ kmax; results seem
to be rather sensitive to the specification of the upper bound
kmax for at least some of the proposed approaches (see the
Monte Carlo evidence in Ahn and Horenstein, 2013);

∗ the use of the eigenvalues ratio ameliorates such arbitrariness

· nonetheless, existing contributions make extensive use of (large)
random matrix theory (see Bai, 1999, for a complete and in-
sightful review), which requires several constraints on the
form and amount of serial and cross sectional dependence;

· a standard requirement is that the sample sizes N and T
are not too different from each other, usually assuming that,
as min {N,T} → ∞, N

T → c ∈ (0,∞). This is not always
desirable, and examples include such diverse fields as

a. accounting (where data are often recorded on an annual ba-
sis and are available for many companies, but for a limited
number of years),

b. finance (where e.g. data on hedge funds performance are
available for thousands of funds, which are live for a relatively
short span),

c. microeconometrics with firm level data,

d. marketing studies (where revealed preferences are often recorded
over a limited period of time for many consumers),

e. genomics (where usually thousands of genomes are observed
for tens of patients)
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Some vocabulary is needed here:

• static vs. dynamic factor models: Ft affects Xt only contemporaneously,
as opposed to

Xi,t = φ′i (1− ρL)Ft + ui,t;

• exact vs approximate: the covariance structure of the idiosyncratic needs
not be diagonal:

E (ui,tuj,s) 6= 0;

• curse vs blessing of dimensionality: unless we are in an exact factor model,
we cannot estimate (1) unless N →∞.

2 Determining k: stationary data, but a more
general technique

The idea is always the same.
Let Xt ≡ [X1,t, ..., XN,t]

′
, and make it zero mean for simplicity. Then it is

well known that, if you take the p-th eigenvalue (say λ(p)) of E (XtX
′
t)

λ(p) → ∞
<∞ according as

p ≤ k
p > k

.

So, in principle, one could test, for p = 1, ..., for the null that the p-th eigenvalue
(say λ(p)) of E (XtX

′
t) diverges to positive infinity, versus the alternative that

it is bounded: {
H0 : λ(p) →∞
HA : λ(p) <∞ . (2)

The tests can then be employed as part of a “sequential” procedure to determine
k.

2.1 Assumptions and preliminary theory

Consider the matrix form of (1)

Xt = ΦFt + ut; (3)

in (54), ut ≡ [u1,t, ..., uN,t]
′

and Φ ≡ [φ1|...|φN ]
′
.

As promised, we assume, without loss of generality

• that the data have mean zero,

• and also that common factors and idiosyncratic errors are orthogonal (typ-
ical in this literature).
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Assumption 1. It holds that (i) E (Xi,t) = 0 for 1 ≤ i ≤ N and 1 ≤ t ≤ T ;
(ii) E

(
Fj,tu

′
i,t

)
= 0 for 1 ≤ j ≤ k, 1 ≤ i ≤ N and 1 ≤ t ≤ T .

By Assumption 1, T−1
∑T
t=1E (XtX

′
t) ≡ ΣX = ΦΣFΦ′ + Σu, having defined

ΣF ≡ T−1
∑T
t=1E (FtF

′
t ) and Σu ≡ T−1

∑T
t=1E (utu

′
t). The following notation

will also be used extensively henceforth: the p-th largest eigenvalue of ΣX is
denoted as λ(p); the p-th eigenvalue of ΦΣFΦ′ as γ(p); and, finally, the p-th
eigenvalue of Σu as ω(p).

Assumption 2. It holds that (i) γ(p) = mpN for 1 ≤ p ≤ k and some

mp > 0; (ii) ω(p) ≤M for all 1 ≤ p ≤ N ; (iii) N−1
∑N
i=1 γ

(p) ≤ M for all N .

Assumption 2 adds some structure to the spectra of ΦΣFΦ′ and Σu:

• similar, in spirit, to Assumptions 4, 5 and 8 in Forni, Giannone, Lippi and
Reichlin (2009);

• the ω(p)s must be finite;

– however, they do not need to be distinct or bounded away from zero,
and some or all of them could indeed be zero.

• lots of the γ(p)s are zero of course. The ones who are not

– diverge as N →∞, proportionally to N ;

– this requires that N−1Φ′Φ tends to a positive definite matrix;

– often called “strong” or “pervasive” factors. We could anyway study
the more general case of γ(p) = mpN

1−νp with νp ∈ [0, 1).

• Assumption 2 does not require that the λ(p)s be distinct, or that the
diverging eigenvalues be well-separated, which are typical requirement in
this literature (see e.g. Wang and Fan, 2016, and also Forni, Giannone,
Lippi and Reichlin, 2009).

The following well-known result characterizes the eigenvalues of ΣX .

Lemma 1. Let c(p) be a set of nonnegative finite numbers, which are strictly
positive for p ≤ k. Then, under Assumptions 1 and 2(i)-(ii), it holds that, as
N →∞ {

λ(p)

N → c(p) for 1 ≤ p ≤ k
λ(p) → c(p) for k + 1 ≤ p ≤ N

. (4)

Further, define

λN ≡
1

N

N∑
p=1

λ(p); (5)

5



under Assumptions 1 and 2, it holds that{
lim supN→∞ λN = λ

sup
<∞

lim infN→∞ λN = λ
inf
> 0

. (6)

According to Lemma 1, λ(p) either diverges at a rate O (N), or it converges
to a finite constant (which may well be equal to zero) according as p ≤ k or not.
Basically, the behaviour of the eigenvalues of ΣX as N passes to infinity is the
same as that of the eigenvalues of ΦΣFΦ′.

2.2 Estimation of λ(p)

Consider Σ̂X ≡ 1
T

∑T
t=1XtX

′
t, and let λ̂(p) denote the p-th largest eigenvalue of

Σ̂X . In order to derive the asymptotics of λ̂(p), we need the following assump-
tion.

Assumption 3. It holds that (i) E |Xi,t|4+ε ≤M for 1 ≤ i ≤ N , 1 ≤ t ≤ T
and some ε > 0; (ii)

E max
1≤t̃≤T

 t̃∑
t=1

Xh,tXj,t − E (Xh,tXj,t)

2

≤MT

for 1 ≤ h, j ≤ N .

Assumption 3

• requires 4-th moments (lots but not that much after all);

• it constrains the amount of serial correlation that one can have in the
process {Xh,tXj,t}Tt=1 - and therefore, albeit indirectly, in Xi,t.

– so, Xi,t does not need to be independent across t, which is a require-
ment in “classical” Random Matrix Theory (see Bai, 1999).

• it is on the Xi,ts, as opposed to considering the unobservable quantities Ft
and ui,t (see however Forni, Giannone, Lippi and Reichlin, 2009). In this
respect, Assumption 3(ii), on account of its involving observable quantities
only, should be easier to understand and verify;

• examples could be

– the data are independent;

– assume that Xi,t is a stationary process with the representation
Xi,t = fi (εi,t, εi,t−1, ...) for some measurable function fi : R∞ → R,
an i.i.d. sequence {εi,t}, with∥∥Xi,t − E

(
Xi,t|F s,ti

)∥∥
2
≤ ci,ts−%i , (7)
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where F s,t
i is the σ-field generated by {εi,t, εi,t−1, ..., εi,t−s}, ‖·‖2 de-

notes the L2-norm and ci,t is a sequence of non-negative numbers.
Examples: linear processes, ARCH and GARCH processes and data
from dynamical systems and Volterra series (see Davidson, 2002, in-
ter alia).

The rate of convergence of λ̂(p) is in the following lemma.

Lemma 2. Under Assumptions 1 and 3, it holds that

λ̂(p) = λ(p) +Oa.s.

[
N√
T

(
ln1+εN

) (
ln

1+ε
2 T

)]
, (8)

for 1 ≤ p ≤ min {N,T}, where ε > 0.

Lemma 9

• contains a strong rate for λ̂(p)−λ(p) - almost sure is needed here, not just
a technical sophistication;

• valid for any combination of N and T , and for all estimated eigenvalues;

• does not require any assumptions on the λ(p)s: these do not need to be
distinct or (when they diverge) well-separated; some of the eigenvalues
may be equal to zero; and the eigenvalues that diverge do not need to do
it at any special rate.

Compare with classical Random Matrix Theory

• where it has been shown that, under the assumptions that Xi,t is i.i.d.

across i and t and that N
T → c ∈ (0,∞), it holds that λ̂(p)−λ(p) = Oa.s. (1)

- see Bai and Yin (1993).

• Lemma 9 illustrates what happens in the presence of common factors,
which introduce dependence, and loads thereof

• Wang and Fan (2016; see Theorem 3.1) derive the limiting distribution of

λ̂(p) for 1 ≤ p ≤ k, showing asymptotic normality at a rate N√
T

. This sug-

gests that the strong rate in (8) should be optimal, modulo the logarithmic
terms, at least for 1 ≤ p ≤ k;

– however that Lemma 9 holds for all eigenvalues, not only for the
spiked ones.
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2.3 The test

We test for {
H0 : λ(p) = mpN
HA : λ(p) = mp <∞

,

for some 0 < mp <∞ and finite. The more general case of weak factors is also
studied.

Let β ≡ lnN
lnT , and define δ ∈ [0, 1) such that

δ

{
> 0
> 1− 1

2β

according as
β ≤ 1

2
β > 1

2

. (9)

Finally, consider the following estimator of λN

λ̂N ≡
1

N

N∑
p=1

λ̂(p). (10)

We are now ready to introduce the test. Define

ϕ(p) ≡ exp

{
N−δ

λ̂(p)

λ̂N

}
. (11)

Then

• under the null that λ(p) = mpN , ϕ(p) →∞ at a rate exp
{
N1−δ};

• conversely, ϕ(p) converges to a finite number under the alternative that
λ(p) <∞. Let’s try to see why...

• note also that λ̂N makes the argument of the exponential scale-free; in
principle, any statistic that ensures scale invariance may also be used.

Given that ϕ(p) → ∞ under the null, we cannot use it directly and we
instead propose a randomised version of it. We present the construction of the
test statistic as a four step algorithm.

Step 1 Generate an artificial sample
{
ξ

(p)
j

}R
j=1

as i.i.d. N (0, 1), and define

the sequence
√
ϕ(p) × ξ(p)

j , 1 ≤ j ≤ R;

Step 2 Define the sample
{
ζ

(p)
j (u)

}R
j=1

as

ζ
(p)
j (u) ≡ I

[√
ϕ(p) × ξ(p)

j ≤ u
]
, (12)

with u extracted from a distribution F (u) with support U ⊂ R\ {0};
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Step 3 Compute

ϑ(p) (u) ≡ 2√
R

R∑
j=1

[
ζ

(p)
j (u)− 1

2

]
; (13)

Step 4 Define the test statistic

Θ(p) ≡
∫
U

[
ϑ(p) (u)

]2
dF (u) . (14)

Here is a heuristic preview

• Under the null,

– ϕ(p) passes to infinity, so...

– ... the variance of
√
ϕ(p) × ξ(p)

j should be ∞, so...

– ... the i.i.d. sequence
{
ζ

(p)
j (u)

}R
j=1

follows a Bernoulli distribution

with E
[
ζ

(p)
j (u)

]
= 1

2 , so...

– ... in (13) a CLT should hold whereby, as R→∞, ϑ(p) (u) should be
N (0, 1).

• Under the alternative,

– ϕ(p) should remain finite, so...

– ... it can be expected that, for any u 6= 0, E
[
ζ

(p)
j (u)

]
6= 1

2 , so...

– ... in (13), there is a sum of i.i.d. random variables with nonzero
mean, which by the LLN diverges to positive infinity at a speed

√
R.

Let’s formalise.

Notation: P ∗ is the probability law of
{
ζ

(p)
j (u)

}R
j=1

conditional on the sam-

ple, and “
D∗→” denotes convergence in distribution according to P ∗.

Theorem 3. Let Assumptions 1-3 hold. Then, under H0 : λ(p) = mpN , as
min {N,T,R} → ∞ with

R exp
{
−εN1−δ}→ 0, (15)

for some 0 < ε <
mp
λN

, it holds that Θ(p) D∗→ χ2
1 a.s.-P ∗ conditionally on the

sample.

Define cα such that, as min {N,T,R} → ∞, it holds that P
[
Θ(p) ≤ cα

]
= α

under H0. The following theorem states that the test is consistent versus the
alternative HA : λ(p) ≤ mp.
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Theorem 4. Let Assumptions 1-3 hold. Under HA, as min {N,T,R} → ∞, it
holds that P

[
Θ(p) > cα

]
= 1 a.s.-P ∗ conditionally on the sample.

All very well, but this is a test on the single p: how do we determine k?
Well, we keep testing until we stop (=reject). Take a look

Step 1 Run the test for H0 : λ(1) = ∞ based on Θ(1). If the null is rejected,
set k̂ = 0 and stop, otherwise go to the next step.

Step 2 Starting from p = 1, run the test for H0 : λ(p+1) = ∞ based on

Θ(p+1), constructed using an artificial sample
{
ξ

(p+1)
j

}R
j=1

generated in-

dependently of
{
ξ

(1)
j

}R
j=1

, ...,
{
ξ

(p)
j

}R
j=1

. If the null is rejected, set k̂ = p

and stop; otherwise repeat the step until the null is rejected (or until a
pre-specified maximum number, say kmax, is reached).

As can be expected, in this context a pivotal role is played by the level of the
individual tests, α, which should be chosen so that k̂ is a good approximation
of k, at least asymptotically.

Theorem 5. Let Assumptions 1-3 hold, and define the level of each individual
test as α = α (N,T ). As min {N,R, T} → ∞ under (15), if kmax ≥ k and

α (N,T ) → 0, then it holds that P
[
k̂ = k

]
= 1 a.s.-P ∗ conditionally on the

sample.

Theorem 5:

• states that k̂ is consistent, as long as the level α of the individual tests is
chosen so as to converge to zero: no specific rates are required;

• no requirement on any special choice of kmax: as long as this value is “large
enough” (that is, as long as kmax ≥ k), the theorem holds

– usually the literature uses the Schwert’s rule (Schwert, 1989; see also
the comments in Bai and Ng, 2002, p. 203), although other choices
are also possible. In our context, even the choice kmax = min {N,T}
is allowed; indeed, simulations show that the estimation procedure is
not sensitive to the choice of kmax.

2.3.1 Final comments, etc...

But an extremely important side-note. We’ll go fast, but it is really important
anyway. What if I have weak factors:

• either because they are weak, or

• because only some units are affected?
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Formally, eigenvalues no longer diverge as fast as N . We can anyway readily
study {

H0 : λ(p) = mpN
1−νp

HA : λ(p) ≤ mp <∞
, (16)

for some νp ∈ [0, 1).
Consider the following extension of Assumption 2.

Assumption 4. It holds that (i) γ(p) = mpN
1−νp with νp ∈ [0, 1) for

1 ≤ p ≤ k and some mp > 0; (ii) ω(p) ≤ M for all 1 ≤ p ≤ N ; (iii) (a)

N−1
∑N
i=1 γ

(p) ≤ M for all N , and (b) either ω(N) > 0 or N−1
∑N
i=1 γ

(p) ≥M ′
for all N .

Assumption 4 is the same as Assumption 2. The only difference is part
(iii)(b), which implies a lower bound on 1

N

∑N
p=1 λ

(p). This holds, for example,
if Σu has full rank.

Lemma 6. Let c(p), 1 ≤ p ≤ N , be a sequence of nonnegative finite numbers,
which are strictly positive for p ≤ k. Then, under Assumption 4(i)-(ii), it holds
that, as N →∞ {

λ(p)

N1−νp → c(p) for 1 ≤ p ≤ k
λ(p) → c(p) for k + 1 ≤ p ≤ N

. (17)

Further, under Assumptions 1 and 4(i)-(iii), it holds that{
lim supN→∞ λN = λ

sup
<∞

lim infN→∞ λN = λ
inf
> 0

. (18)

Let χ2
1,1−α denote the 1 − α upper percentile of the χ2

1 distribution. The
following corollary extends the results in Theorems 3 and 78 to the case of weak
factors.

Corollary 7. Let Assumptions 3 and 4 hold, and let min {N,T,R} → ∞.
Under H0 : λ(p) = mpN

1−νp , if it holds that

R exp
{
−εN [1−(νp+δ)]

}
→ 0, (19)

for some 0 < ε <
mp
λN

, then it holds that P
[
Θ(p) ≤ χ2

1,1−α
]

= α a.s.-P ∗ condi-

tionally on the sample. Further, under HA : λ(p) ≤M <∞, if (15) holds, then
P
[
Θ(p) > χ2

1,1−α
]

= 1 a.s.-P ∗ conditionally on the sample.

We find that

• the test is able to accept H0 in this context, with a probability of a Type
I error equal to a given level α;
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• however, this depends on νp, and on the relative rate of divergence between
N and T as they pass to infinity:

– able to detect the presence of weak factors, as long as they are not
“too weak”; otherwise, they would be indistinguishable from an id-
iosyncratic component with some degree of cross-correlation.

– At a minimum, we need νp + δ < 1.

∗ case β ≤ 1
2 : it is required that νp < 1. Thus, when β approaches

zero (and, therefore, whenN is much smaller than T ), this entails
that the test is able to detect even very weak factors. This result
entails that when there is enough signal (T ), the dimensionality
of the covariance matrix N is less of a problem.

∗ case β > 1
2 : it is required that νp < 1− 1

2β : as β increases (and,

therefore, as N becomes much bigger than T ), the test is less
and less able to detect weak factors.

∗ It is interesting to consider the case of β = 1, which indicates N
and T being of comparable magnitude: in such case, (19) requires
that νp <

1
2 . Thus, the test can detect weak factors, but only if

the corresponding eigenvalue diverges a bit faster than N1/2.

Let’s look at some numbers. I compared against the methodologies suggested
in Bai and Ng (2002; referred to as IC1, IC2, PC1, PC2 below), also considering
the refinements developed by Alessi, Barigozzi and Capasso (2010); Onatski
(2010; referred to as ON), and Ahn and Horenstein (2013; referred to as ER
and GR):

IC1 = arg min
0≤k≤kmax

[
lnV (k) + C0k

N + T

NT
ln

(
NT

N + T

)]
IC2 = arg min

0≤k≤kmax

[
lnV (k) + C0k

N + T

NT
ln (min {N,T})

]
PC1 = arg min

0≤k≤kmax

[
V (k) + C0σ̂

2k
N + T

NT
ln

(
NT

N + T

)]
PC2 = arg min

0≤k≤kmax

[
V (k) + C0σ̂

2k
N + T

NT
ln (min {N,T})

]
ON = arg max

0≤k≤kmax

[
k|λ̂(k) >

(
1 +N−1/3

)
û
]

ER = arg max
0≤k≤kmax

λ̂(k)

λ̂(k+1)

GR = arg max
0≤k≤kmax

ln
[
1 + λ̂(k)/v (k)

]
ln
[
1 + λ̂(k+1)/v (k + 1)

]
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where

V (k) =
1

NT

N∑
i=1

T∑
t=1

(
Xi,t − φ̂′iF̂t

)2

,

with φ̂i and F̂t the estimators of φi and Ft studied in Bai (2003) under exactly

k factors. We define σ̂2 = V (kmax), û = 2.7λ̂(kmax+1) − 1.7λ̂(2kmax+1) and

v (k) =
∑min{N,T}
j=k+1 λ̂(j). Finally, considering IC1, IC2, PC1 and PC2, we

report the best result out of the four criteria (that is, the one which corresponds
to the lowest value of ME) for the case C0 = 1 (which corresponds to the criteria
studied by Bai and Ng, 2002). In their contribution, Alessi, Barigozzi and
Capasso (2010) recommend to employ different values of the tuning constant
C0, and to evaluate the estimated number of factors over a whole range of
values of C0, thereby selecting the optimal one, identified as the value which
yields a stable estimate of k. We implemented this procedure by searching for
the optimal value of C0 over the grid [0, 13], using intervals of width 0.005;
results are reported for PC1, which was the best performing criterion across all
exercises.

Let’s look at the numbers, but the messages will be

• no criterion can be the absolute winner;

• the test has excellent power for all cases considered, being able to detect
whether k = 0 or not;

• otherwise

– results are good all across the board when there is only serial depen-
dence; k̂ is the best criterion when N is small;

– when there is cross sectional dependence, conclusions become more
mixed:

∗ k̂ fares better than the other criteria when N is quite small

∗ all estimators fare worse as k increases.
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3 Determining the dimension of factor struc-
tures with nonstationary data

This topic could be useful per se, or as a revision. Sadly, I must change the
notation (to be consistent with our paper).

We will consider a methodology to estimate the dimension of the space
spanned by the common (nonstationary) factors in a large approximate factor
model

Xt = ΛFt + ut, (20)

where Λ is an N × r matrix and Ft is an r-dimensional vector. We will also
make use of the scalar version of (20)

Xi,t = λ′iFt + ui,t, (21)

with 1 ≤ i ≤ N and 1 ≤ t ≤ T .

Although the relevant assumptions are spelt out later on, in (20) we are
assuming that there are three possible categories of common factors in the vector
Ft:

• factors with a linear trend and an additional, either an I (1) or I (0), zero
mean component;

• pure, zero mean I (1) factors with no trends;

• and, finally, stationary common factors.

Each group may well have dimension zero, which means that, for example,
no I (1) factors with drift exist, etc. We also assume, throughout the paper,
that ui,t ∼ I (0) for each i.

Equation (20) could be useful:

• in applications:

– employment fluctuations across 60 industries in the US - Bai (2004);

– interest rates at different maturities in the US and Canada - Moon
and Perron (2007);

– real macroeconomic data in US - Maciejowska (2010);

– bilateral exchange rates with US dollar - Engel, Mark, and West
(2015).

• also, models with common linear trends have also been used for tempera-
ture data in US - Chen and Wu (2017);

• Testing for the number of I(1) factors allows to test for:
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– the presence of unit roots in large panels - Bai and Ng (2004);

– the rank of cointegration in large panels - Onatski and Wang (2017).

As we saw before, there are contributions to determine the number of com-
mon factors. Most methodologies focus on the case of stationary datasets,
though: there is little on nonstationary data:

• we could certinaly use methods for differenced data:

– information criteria: Bai and Ng (2002);

∗ ... but, remember, thresholds are set arbitrarily;

∗ ... and cannot test for no-factors;

∗ tests: Onatski (2010), Trapani (2017);

· ... but the nature of the factors is not understandable (dif-
ferencing destroys all differences).

• we could analyse the level data directly:

– information criteria: Bai (2004), Maciejowska (2010);

∗ ... but same limitations as above;

– except we can distinguish stationary from non-stationary factors;

– no test available.

Some ideas on what we do.
We build on the usual idea that eigenvalues of the second moment matrix of

the data are tested to verify whether they diverge to infinity as min (N,T )→∞,
or whether they are bounded. Analyis is based on the sample second moment
matrix of Xt

T∑
t=1

XtX
′
t.

A heuristic preview of how the procedure works:

• if I have linear trends, it can be expected that

– the sample second moment matrix of Xt will diverge as fast as T 3;

– due to the well known eigenvalue separation property of large factor
models, it can be expected that the eigenvalues corresponding to
common factors should diverge as fast as N
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– This suggests to consider the eigenvalues of T−3
∑
tXtX

′
t (denoted

as, say, ν
(p)
1 ), and test for{

H0 : ν
(p)
1 →∞

HA : ν
(p)
1 <∞

.

as min (N,T ) → ∞; the test can be carried out for p = 1, 2, ...,
stopping as soon as the null is rejected.

• if I have zero mean, I (1) common factors

– the FCLT suggests that the second moment matrix of Xt will diverge
as fast as T 2,

– again the eigenvalues corresponding to the common factors diverge
as fast as N .

– Thus, one could study the eigenvalues of T−2
∑
tXtX

′
t (denoted as,

say, ν
(p)
2 ), and test for {

H0 : ν
(p)
2 →∞

HA : ν
(p)
2 <∞

,

as above

These two steps should provide an estimate of the number of common fac-
tors which, respectively, have a linear trend and are genuinely zero mean I (1)
processes.

• then, of course you can use

T−1
∑
t

∆Xt∆X
′
t

and the previous procedure, to determine the number of total common
factors.

3.1 Model and assumptions

Recall (20)
Xt = ΛFt + ut.

How many linear trends can I have, first of all?
We show that the number of common factors with a linear trend can be

either zero - no common factors with linear trends - or 1. We assume that

Ft = A (d1t) +Bψt, (22)
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where A is a nonzero r×1 vector and B an r×r matrix; importantly, in (22) d1

is a dummy variable. The r-dimensional vector ψt has components which are a
mixture of I (0) and I (1), with no linear trends.

We consider the following assumption, which ensures that the factors Ft are
fully identified.

Assumption 1. It holds that: (i) A is nonzero; (ii) rank (B) = r; (iii) the
vector ψt can be rearranged and partitioned as [ψ′at, ψ

′
bt]
′
, where ψat ∼ I (1) has

dimension r2 + d2 and ψbt ∼ I (0) has dimension r3 + (1− d2), where d2 is a
dummy variable.

Lemma 8. Under Assumption 1, (21) can be equivalently represented as

Xi,t = λ
(1)
i f

(1)
t + λ

(2)′
i f

(2)
t + λ

(3)′
i f

(3)
t + ui,t, (23)

where the common factors are defined by the following equations

f
(1)
t = d1t+ d2f

(1)†
t + (1− d2) gt, (24)

f
(1)†
t = f

(1)†
0 +

t∑
j=1

e
(1)
t , (25)

f
(2)
t = f

(2)
0 +

t∑
j=1

e
(2)
t ; (26)

in (24)-(26): f
(1)
t is an r1 × 1 vector, f

(2)
t is an r2 × 1 vector, f

(3)
t is an r3 × 1

vector, and e
(1)
t , e

(2)
t , gt and f

(3)
t are I (0).

Therefore, the number of common factors in Xi,t is summarised in the table
below.

Factor type Number

With linear trend r1d1

Zero mean, I (1) r2 + r1 (1− d1) d2

Zero mean, I (0) r3 + r1 (1− d1) (1− d2)

Total nonstationary r∗ = r1d1 + r2 + r1 (1− d1) d2

Total number of common factors r = r∗ + r3 + r1 (1− d1) (1− d2)
= r1 + r2 + r3

We now spell out the main assumptions. Consider the (r2 + d2)-dimensional

vectors f∗t , where f∗t =
[
f

(1)†
t , f

(2)′
t

]′
or f∗t = f

(2)
t , according as d2 = 1 or 0; and

17



et, where et =
[
e

(1)
t , e

(2)′
t

]′
or et = e

(2)
t , according as d2 = 1 or 0. We define the

long-run covariance matrix associated with f∗t as

Σ∆f = lim
T→∞

V ar

(
T−1/2

T∑
t=1

et

)
. (27)

Assumption 2. Let κ > 0. It holds that (i) E ‖et‖2+κ
< ∞ for all t; (ii)

E
∣∣∣f†0 ∣∣∣2+κ

< ∞; (iii) Σ∆f is positive definite; (iv) there exists, on a suitably

enlarged probability space, an (r2 + d2)-dimensional standard Wiener process
W (t) such that

sup
1≤j≤t

∥∥∥f∗j − Σ
1/2
∆fW (j)

∥∥∥ = Oa.s.

(
t1/2−ε

)
,

for some ε > 0; (v) E
∥∥∥∑T

t=1 et

∥∥∥2+κ

≤ C0

(∑T
t=1E ‖et‖

2
) 2+κ

2

.

Assumption 2 says that

• we require the existence of at least the second moment of the innovation
et and of the initial condition f∗0 respectively;

• a strong approximation exists for the partial sums process ft;

• a Burkholder-type inequality holds;

• so, et is allowed to be (weakly) dependent over time

– e.g. I could assume such processes as iid, linear processes, ARCH/GARCH,
Volterra series and data generated by dynamical systems.

Assumption 3 It holds that: (i) (a) max1≤i≤N,1≤t≤T E |ui,t|4 < ∞; (b)

max1≤t≤T E
∥∥∥f (3)
t

∥∥∥4

<∞; and (c) max1≤t≤T E |gt|4 <∞; (ii) (a) max1≤i≤N E
∥∥∥∑T

t=1 f
∗
t ui,t

∥∥∥2

≤ C0T
2; (b) E

∥∥∥∑T
t=1 f

∗
t f

(3)′
t

∥∥∥2

≤ C0T
2; and (c) E

∥∥∥∑T
t=1 f

∗
t gt

∥∥∥2

≤ C0T
2;

(iii) E
∥∥∥∑T

t=1 tf
∗
t

∥∥∥2

≤ C0T
5; (iv) (a) max1≤i≤N E

∣∣∣∑T
t=1 tui,t

∣∣∣2 ≤ C0T
3; (b)

E
∥∥∥∑T

t=1 tf
(3)
t

∥∥∥2

≤ C0T
3; and (c) E

∣∣∣∑T
t=1 tgt

∣∣∣2 ≤ C0T
3; (v) E

∥∥∥∑T
t=1 f

∗
t f
∗′
t

∥∥∥2

≤ C0T
4.

Assumption 3 says that

• we need the existence of the 4-th moments, which is a milder assumption
than the customary 8-th moment existence requirement;
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• other parts are very high-level.

Assumption 4. The loadings Λ are nonstochastic with (i) max1≤i≤N ‖λi‖ <
∞; (ii) limN→∞

Λ′Λ
N → ΣΛ, where the matrix ΣΛ is positive definite.

Assumption 4 is standard

• every diagonal block of ΣΛ is also positive definite;

• the common factors belonging in each category are “strong” or “perva-
sive”.

3.2 Preliminary results

We base inference on the two matrices

Σ1 =
1

T 3

T∑
t=1

XtX
′
t, (28)

Σ2 =
1

T 2

T∑
t=1

XtX
′
t; (29)

we denote the p-th largest eigenvalues of Σ1 and Σ2 as ν
(p)
1 and ν

(p)
2 respectively.

We will also make use of the (slowly varying) sequence

lN,T = (lnN)
1+ε

(lnT )
3
2 +ε

,

where ε > 0.

Theorem 9. Under Assumptions 1-4, it holds that, for every positive, bounded
constants Cp, there are some random N0 and T0 such that, for all N ≥ N0 and
T ≥ T0

ν
(p)
1 ≥ CpN for p ≤ r1, (30)

ν
(p)
1 = Oa.s.

(
N√
T
lN,T

)
for p > r1, (31)

and

ν
(p)
2 ≥ Cp

N

ln lnT
for 1 ≤ p ≤ r2 + max {r1, d2} , (32)

ν
(p)
2 = Oa.s.

(
N√
T
lN,T

)
for p > r2 + max {r1, d2} . (33)

Theorem :

• is a separation result for the eigenvalues corresponding to common factors
in Σ1 and Σ2.
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• (30) and (31) refer to Σ1:

– we normalise by T−3: because, in essence, T−3
∑T
t=1 t

2 <∞;

– the first r1 eigenvalues diverge to infinity at a rate N ; the others
don’t, they are bounded;

– no restrictions on the relative rate of divergence between N and T
as they pass to infinity;

– ν
(p)
1 , when p > r1, may be very large;

∗ it is however smaller - by a factor T−1/2 - compared to that of

ν
(p)
1 when p ≤ r1!

• (32) and (33) refer to Σ2:

– we normalise by T−2:

∗ because the partial sums of f∗t f
∗′
t should grow at least as fast

as T 2 by the FCLT in functional spaces (note, this is only an
intuition: we need an a.s. rate, so we use the Law of the Iterated
Logarithm);

– the remaining eigenvalues may also diverge, but this will happen at
a slower rate.

• the theorem provides only rates: no distributional results are available

– when data are stationary, an asymptotic distribution for the esti-
mates of the diverging eigenvalues exists, but...

– ... we do not know if this can also be done for the ν
(p)
1 s and the ν

(p)
2 s.

– Hence, in what follows we will rely only on rates!

Finally, in order to construct the relevant test statistics, we will also make
use of the first differenced version of (23):

∆Xt = Λ∆ft + ∆ut. (34)

Assumption 5 It holds that: (i) E (∆fj,t∆ui,t) = 0 for 1 ≤ j ≤ r and

1 ≤ i ≤ N ; (ii) max1≤i≤N,1≤t≤T E |∆Xi,t|4 ≤ C0; (iii)

E max
1≤t̃≤T

∣∣∣∣∣∣
t̃∑
t=1

∆Xh,t∆Xj,t − E (∆Xh,t∆Xj,t)

∣∣∣∣∣∣
2

≤ C0;

(iv) (a) T−1
∑T
t=1E (∆ft∆f

′
t) is a positive definite matrix; (b) the largest eigen-

value of T−1
∑T
t=1E (∆ut∆u

′
t) is finite; (c) T−1

∑T
t=1E (∆ut∆u

′
t) is a positive

definite matrix.

As we will see, we consider the matrix T−1
∑T
t=1E (∆Xt∆X

′
t); with the

same notation as before, we denote the p-th estimate of the largest eigenvalue

of T−1
∑T
t=1E (∆Xt∆X

′
t) as ν

(p)
3 .
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3.3 The test(s)

We now present our algorithm to estimate the dimension of the factor space.

We begin by determining r1, based on ν
(p)
1 , and we then determine r2, using

ν
(p)
2 .

Consider the notation β = lnN
lnT , and define

δ

{
> 0 when β < 1

2
> 1− 1

2β when β ≥ 1
2

. (35)

The role played by δ is the same as before:

• the largest eigenvalues are (modulo some slowly varying functions) pro-
portional to N ;

• the others, to N
T 1/2 ;

• so, when premultiplying eigenvalues by N−δ, the former will be propor-
tional to N1−δ, thereby still diverging; the latter will be proportional to
N1−δ

T 1/2 , which, by construction, will drift to zero.

We will also extensively use the quantity

ν̂3,j =
1

4 [N − (j + 1)]

N∑
p=j

ν
(p)
3 ; (36)

this will be employed in order to rescale the estimated eigenvalues, so as to
render the test statistic scale invariant. Note the division by 4; this is done,
heuristically, since it is possible that ∆Xi,t could inflate the variance by overdif-
ferencing, and the factor 4 represents the largest inflation factor possible.

Determining the presence of factors with linear trends

Recall the number of common factors with one linear trend is denoted as r1;
we know that either r1 = 0, or r1 = 1.

Consider first T−3
∑T
t=1XtX

′
t, and its eigenvalues ν

(p)
1 :

• based on (30)-(31), the first r1 eigenvalues of T−3
∑T
t=1XtX

′
t should di-

verge to positive infinity, as (N,T )→∞, and...

• ...at a faster rate than the remaining ones.

Thus, the cornerstone of the algorithm to determine r1 is based on checking

whether ν
(p)
1 diverges sufficiently fast. Consider the following transformation of

ν
(p)
1

φ
(p)
1 = exp

{
N−δ

ν
(p)
1

ν̂3,p

}
. (37)
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Based on equations (30) and (31), it can be assumed that

limmin(N,T )→∞ φ
(p)
1 =∞ for p ≤ r1,

limmin(N,T )→∞ φ
(p)
1 = 1 for p > r1,

hold true. The first step is to construct a test for{
H

(1)
0 : ν

(p)
1 ≥ CpN

H
(1)
1 : ν

(p)
1 ≤ Cp N√

T
lN,T

; (38)

since φ
(p)
1 either diverges to infinity or not, but does not have any randomness,

we propose to use randomisation.

Step 1 Generate an i.i.d. sample
{
ξ

(p)
1,j

}R1

j=1
from a common distribution G1,

independently across p, and define the sequence

√
φ

(p)
1 × ξ(p)

j , 1 ≤ j ≤ R;

Step 2 For any u drawn from a distribution F1 (u), define

ζ
(p)
1,j (u) = I

[
φ

(p)
1 × ξ(p)

1,j ≤ u
]
.

Step 3 Compute

ϑ
(p)
1 (u) =

1√
R1

R1∑
j=1

ζ
(p)
1,j (u)−G1 (0)√
G1 (0) [1−G1 (0)]

.

Step 4 Compute

Θ
(p)
1 =

∫ +∞

−∞

∣∣∣ϑ(p)
1 (u)

∣∣∣2 dF1 (u) .

Same comments as before - it is getting repetitive now:

• the only novelty is that we now want to generalise, and use some distri-
bution G1, in Step 1, instead of the normal

• no real reason to do it, but the maths becomes more elegant.

Assumption 6. It holds that: (i) (a) G1 has a bounded density function
and (b) G1 (0) 6= 0 or 1; (ii) (a)

∫
u2dF1 (u) <∞.

It holds that
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Theorem 10. Consider (38). Under Assumptions 1-6, if

lim
min{N,R1}→∞

√
R1 exp

{
−N1−δ} = 0, (39)

then it holds that

Θ
(p)
1

D∗→ χ2
1 under H

(1)
0 , (40)

1

R1

∫∞
−∞ (G1 (u)−G1 (0))

2
dF1 (u)

G1 (0) (1−G1 (0))
Θ

(p)
1

P∗→ 1 under H
(1)
1 , (41)

for almost all realisations of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and for all p.

The determination of r1 follows from

Step 1 Run the test for H0 : λ
(1)
1 = ∞ based on Θ

(1)
1 . If the null is rejected,

set r̂1 = 0 and stop, otherwise set r̂1 = 1.

This step consists of a single test. As can be expected, in order to ensure
that r̂1 is consistent, a pivotal role is played by the level of the individual tests,
α1, through the relevant critical value denoted as cα,1.

Lemma 11. Let Assumptions 1-6 and (39) hold. As min {N,R1, T} → ∞, if
cα,1 → ∞ with cα,1 = o (R1), then it holds that P [r̂1 = r1] = 1 for almost all
realisations of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

Note that

• the output of this step is r̂1, which is an estimate of r1;

• now, r1 can only be either 0 or 1, whence the test being stopped at H0 :

ν
(2)
1 =∞

• so, in essence, this step of the procedure is just a test for a common factor
with a linear trend.

Determining the number of I (1) common factors

Consider the matrix T−2
∑T
t=1XtX

′
t, and let its p-th largest eigenvalue ν

(p)
2 .

Based on Theorem 9, the first r∗ eigenvalues of T−2
∑T
t=1XtX

′
t should diverge

to positive infinity, as (N,T )→∞, at a faster rate than the remaining ones. We
exploit this fact, as in the above, by considering the following transformation of

ν
(p)
2

φ
(p)
2 = exp

{
N−δ (ln lnT )

ν
(p)
2

ν̂3,p

}
, (42)

which is very similar to (37) except for the presence of the ln lnT term - this is
based on (32).
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Based on (32)-(33), it can be assumed that

limmin(N,T )→∞ φ
(p)
2 =∞ for p ≤ r∗,

limmin(N,T )→∞ φ
(p)
2 = 1 for p > r∗,

hold true. We propose the following test for{
H

(2)
0 : ν

(p)
2 ≥ Cp N

ln lnT

H
(2)
1 : ν

(p)
2 ≤ Cp N√

T
lN,T

. (43)

Step 1 Generate an i.i.d. sample
{
ξ

(p)
2,j

}R2

j=1
from a common distribution G2,

independently across p, and define the sequence

√
φ

(p)
2 × ξ

(p)
j , 1 ≤ j ≤ R2;

Step 2 For any u drawn from a distribution F2 (u), define

ζ
(p)
2,j (u) = I

[
φ

(p)
2 × ξ(p)

2,j ≤ u
]
.

Step 3 Compute

ϑ
(p)
2 (u) =

1√
R2

R2∑
j=1

ζ
(p)
2,j (u)−G2 (0)√
G2 (0) [1−G2 (0)]

.

Step 4 Compute

Θ
(p)
2 =

∫ +∞

−∞

∣∣∣ϑ(p)
2 (u)

∣∣∣2 dF2 (u) .

Assumption 7. It holds that: (i) (a) G2 has a bounded density function
and (b) G2 (0) 6= 0 or 1; (ii) (a)

∫
u2dF2 (u) <∞.

It holds that

Theorem 12. Consider (43). Under Assumptions 1-7, if

lim
min{N,R2}→∞

√
R2 exp

{
−N1−δ} = 0, (44)

then it holds that

Θ
(p)
2

D∗→ χ2
1 under H

(2)
0 , (45)

1

R2

∫∞
−∞ (G2 (u)−G2 (0))

2
dF1 (u)

G2 (0) (1−G2 (0))
Θ

(p)
2

P∗→ 1 under H
(2)
1 , (46)

for almost all realisations of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} and for all p.
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As noted before, conditionally on the sample the sequence Θ
(p)
2 , p ≥ 1, is

independent across p. We recommend the following algorithm for the determi-
nation of r∗:

Step 1 Run the test for H0 : ν
(1)
2 = ∞ based on Θ

(1)
2 . If the null is rejected,

set r̂∗ = 0 and stop, otherwise go to the next step.

Step 2 Starting from p = 1, run the test for H0 : ν
(p+1)
2 = ∞ based on

Θ
(p+1)
2 , constructed using an artificial sample

{
ξ

(p+1)
2,j

}R2

j=1
generated in-

dependently of
{
ξ

(1)
2,j

}R2

j=1
, ...,

{
ξ

(p)
2,j

}R2

j=1
. If the null is rejected, set r̂∗ = p

and stop; otherwise repeat the step until the null is rejected (or until a
pre-specified maximum number, say r∗max, is reached).

As can be expected, in this context a pivotal role is played by the level of
the individual tests, which should be chosen so that r̂∗ is a good approximation
of r∗, at least asymptotically. Similarly to the previous case, let cα,2 denote the
critical value of the test at each step.

Lemma 13. Let Assumptions 1-7 and (44) hold. As min {N,R2, T} → ∞, if
r2,max ≥ r2 and cα,2 →∞ with cα,2 = o (R2), then it holds that P [r̂∗ = r∗] = 1
for almost all realisations of {et, ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

Note

• we can go quickly here: same interpretation as before;

• after estimating r∗, it is possible to estimate the number of common I (1)
factors which have mean zero as r̂∗ − r̂1;

• indeed, Lemma 13 ensures that

P [r̂∗ − r̂1 = r2 + r1 (1− d1) d2] = 1,

under the conditions of Lemmas 11 and 13.

• for completeness, after estimating r∗, you can apply the very first algo-
rithm to first differenced data, in order to estimate the total number of
common factors:

– denoting such estimate as r̂, it follows that an estimator of the num-
ber of common stationary factors is r̂ − r̂∗.

3.4 Comment: on weak factors again

All common factors are assumed to be strong. This is a direct consequence of
having ‖Λ‖2 = O (N). It is however possible to imagine a situation in which
the common factors are “weak”, or “less pervasive”, for the same well known
reasons:
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• either because they are weak genuinely;

• or because they only affect some units.

For the sake of simplicity, but with no loss of generality, we consider the case
where there are r I(1) factors in total, no stationary factors and, in

Xt = ΛFt + ut,

the matrix Λ′Λ is diagonal, with diagonal elements cp given by

cp =

{
N for 1 ≤ p ≤ p′

N1−κp for p′ < p ≤ r .

Allowing for κp ∈ (0, 1) corresponds to the case of having weak factors, and the
larger κp the weaker the corresponding factor. Suppose that the researcher is
using Σ2 and its eigenvalues in order to determine the number of I (1) common
factors. Repeating exactly the same arguments in the proof of Theorem 9, it
can be shown that

ν
(p)
2 ≥ C0

cp
ln lnT

. (47)

Equation (47) entails that, whenever p′ < p ≤ r,

ν
(p)
2 ≥ C0

N1−κp

ln lnT
. (48)

Our procedure, essentially, is based on testing whether, as min {N,T} → ∞{
H

(2)
0 : N−δν

(p)
2 →∞

H
(2)
1 : N−δν

(p)
2 → 0

,

with δ selected as per (61). Thus, based on (48), weak factors can be determined
if

lim
min{N,T}→∞

N1−κp−δ

ln lnT
→∞,

which requires
κp < 1− δ. (49)

It is the same as before! Take a look

• when β ≤ 1
2 , δ = 0; thus, it is required that κp < 1:

– when N is smaller than T , our procedure is able to detect even very
weak factors

• when β > 1
2 (and therefore N is bigger than T ), it is required that κp <

1− 1
2β :

– as β increases the test is less and less able to detect weak factors;

– when N and T have the same order of magnitude, and thus β = 1,
weak factors can be detected as long as κp <

1
2 - that is, when the

eigenvalues associated with that factor diverge to infinity a bit faster
than N .
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Figure 1: HQM Corporate Bond Yield Curve
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4 Empirical evidence

We have some numbers from the Monte Carlo; available upon request, but the
main message is

• it works a dream!

• the exception, if you will, is when there is no linear trend but a common
I(1) factor and T is small - in this case, the test is occasionally fooled and
thinks there is a linear trend. This vanishes when T increases.

Let’s take a look at an application. It’s not the main point, it is not the only
thing you can do, but let us see.

We illustrate our methodology through an application to the High Quality
Market (HQM) Corporate Bond Yield Curve, available from the Federal Reserve
Economic Data (FRED)

We use

• monthly data on HQM Corporate Bonds with maturities from 6 months
up to 100 years (N = 196),

• spanning the period from January 1985 to September 2017 (T = 393).

The data are shown in Figure 1, which shows evidence of non-stationarity
and co-movements both cross-sectionally and across time.

Results:
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Table 1: Estimated number of factors in the HQM Corporate Bond Yield Curve

BT1 BT2 BT3 IC

with linear trend r̂1 0 0 1 n.a.
non-stationary r̂∗ 1 3 5 5
zero-mean, I(1) r̂2 1 3 4 n.a.
all factors r̂ 1 5 5 5
zero-mean, I(0) r̂3 0 2 0 0

• borderline evidence of a common factor with a linear trend - indeed, this
is picked up by BT3;

• there could be up to 4 zero mean I(1) common factors

– based on the discrepancy between these two criteria, it may be argued
that two of such factors may be only borderline non-stationary

• to sum up, five common factors, which we estimate as the principal com-
ponents of Xt, using the covariance T−2

∑T
t=1XtX

′
t and imposing the

identifying constraint Λ′Λ = NIr.

The estimated factors are shown in Figure 2 (solid red lines).
Let us see, especially in light of the literature which usually identifies 3

common factors (level, slope and curvature):

• in order to identify F̂1,t, we consider the proxy X̄t = N−1
∑N
i=1Xi,t; we

found that corr(X̄t, F̂1,t) ' 1, which strongly suggests that F̂1,t can be
viewed as the level of the curve;

• turning to F̂2,t, we use, as a proxy for the slope, dXt = N−1
∑N
i=2(lnXi,t−

lnXi−1,t) = N−1(lnXN,t − lnX1,t). We find that corr(dXt, F̂2,t) = .82,

which suggests that F̂2,t can be interpreted as the slope of the term struc-
ture;

• we compare F̂3,t to d2Xt = (N − 2)−1
∑N−1
i=2 (Xi+1,t− 2Xi,t +Xi−1,t) as a

proxy for the curvature; we find corr(d2Xt, F̂3,t) = .53, which shows some

evidence that F̂3,t can be interpreted as the curvature.

As far as the remaining two estimated common factors are concerned

• we evaluate the correlation between St - the spread between the 10 years
HQM bond rate and the Federal Funds rate - and the fourth factor finding
that corr(St, F̂4,t) = .51, whence we propose to interpret F̂4,t as the spread
factor.
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Figure 2: Estimated and identified common factors F̂j,t with proxies.
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• letting Rt be the yearly returns of the Standard & Poor’s index, we have
corr(Rt, F̂5,t) = .30; this seems to suggest that F̂5,t may be viewed as a

financial factor, or that, at a minimum, F̂5,t is intimately related to the
financial market.
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Figure 3: Autocorrelation of estimated common factors F̂j,t and idiosyncratic
errors ûi,t.
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Figure 4: Estimated and theoretical factor loadings.
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5 Monitoring for structural breaks

We investigate the issue of testing for the stability of

Xi,t = a′ift + ui,t, (50)

where {Xi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is a panel of N observed time series
observed for T periods and ai and ft are latent vectors of loadings and factors,
respectively, both of dimension r < N and representing the “signal” component
of the data.

In particular, we focus on the sequential monitoring - that is, we propose a
test to check whether there are any breaks as new data come in.

Sequential detection of breaks in (1) is important for at least four reasons

• it is important to verify whether a model, which has been valid thus far,
is still capable of adequately approximate the behaviour of new data;

• there is empirical evidence that factor structures do tend to change over
time, especially in presence of a crisis;

• inference on factor models can be severely marred by the presence of a
break; think about forecasting;

• it is generally true that on-line monitoring might be costly, but nowadays,
at least in economics and finance where data are collected and made avail-
able automatically, such cost is almost negligible, especially if compared
with the potential costs of employing a model which is no longer valid.

There are several possible ways in which a factor model may undergo a
change at a point in time τ , but

• in all cases it may be argued that a change in the factor structure of the
data will result in a change in the covariance matrix of {Xi,t}Ni=1;

• since common factors determine the presence and number of spiked eigen-
value of the covariance of {Xi,t}Ni=1...

• ... it is natural to investigate whether a change has occurred in a factor
structure by verifying whether changes have occurred in the spectrum of
the covariance matrix.

Formally, we test for the null hypothesis that the factor structure does not
change, viz.:

H0 : Xi,t =

r∑
j=1

aijfj,t + ui,t, 1 ≤ t ≤ T.

As far as alternatives are concerned, we focus on two different possible breaks
at a point in time τ :
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• changes in the loadings attached to one or more common factor:

HA,1 :

{
Xi,t =

∑r
j=1 aijfj,t + ui,t

Xi,t =
∑r
j=1 ãijfj,t + ui,t

for
1 ≤ t < τ
τ ≤ t ≤ T , (51)

where ãij 6= aij for some i and j;

• the appearance of q ≥ 1 new factors:

HA,2 :

{
Xi,t =

∑r
j=1 aijfj,t + ui,t

Xi,t =
∑r
j=1 aijfj,t +

∑q
j=1 bijgj,t + ui,t

for
1 ≤ t < τ
τ ≤ t ≤ T .

(52)

Now:

• Hypothesis HA,1 is the typical case considered in all the above cited liter-
ature on change points in factor models;

• HA,2 has received less attention from the literature;

• other alternatives can also be accommodated in our framework.

Main result

• we show that, under both HA,1 and HA,2, the (r + 1)-th largest eigenvalue
of the covariance matrix of {Xi,t}Ni=1

– becomes unbounded at time τ + 1, passing to infinity as fast as the
sample size N if there is a break;

– it stays bounded under the null of no break.

• Thus, we base our test on the estimated (r + 1)-th eigenvalue of the sample
covariance matrix of {Xi,t}Ni=1.

• This has its difficulties:

– under the null of no break, the (r + 1)-th sample eigenvalue does not
have a known distribution;

– indeed it cannot even be estimated consistently;

– we have no idea about the dependence structure of the estimators,
as a technical (but crucial) difficulty.
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6 Assumptions and preliminary theory

Recall the model

Xi,t = a′i(t)ft + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (53)

We use the notation r (t) to denote the number of factors at a given time t, i.e.
the vectors of loadings ai(t) and of factors ft have dimension r(t).

Consider also the matrix form of (53):

Xt = A(t)ft + ut, 1 ≤ t ≤ T, (54)

where, A(t) = [a1(t)|...|aN (t)]
′

is the loadings matrix and ut = [u1,t, ..., uN,t]
′

is
called “idiosyncratic” component.

We define the covariance matrix of the data at time t as ΣX (t) = E (XtX
′
t).

Consider the (population) rolling covariance matrix

Σm (t) =
1

m

t∑
k=t−m+1

ΣX (k) , m ≤ t ≤ T, (55)

and its sample counterpart

Σ̂m (t) =
1

m

t∑
k=t−m+1

XkX
′
k, m ≤ t ≤ T. (56)

Very important notation

• m will then denote our sample size when estimating the model

– hence our asymptotic results are defined for m→∞;

• we assume that for the first m periods no change-point is present and we
have r factors;

• our monitoring procedure will last until T > m:

– therefore, the total number of observations T includes both the esti-
mation and the monitoring period.

– Note that, in real applications, the monitoring may be expected to
go on indefinitely, so that T →∞.

We start with the following assumption.

Assumption 1 It holds that (i) E (Xi,t) = 0 for all 1 ≤ i ≤ N and 1 ≤ t ≤
T ; (ii) E(fj,tui,t) = 0 for all i, j, t; (iii) r(t) = r for 1 ≤ t ≤ m; (iv) r(t) < N
for 1 ≤ t ≤ T and for any N .

Notes:
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• ”classical” assumption...

• by part (iii), we have that, in presence of breaks, the change-point location
τ is such that τ > m;

• the covariance is decomposed as

ΣX (t) = A (t) ΣF (t)A (t)
′
+ Σu (t) ,

having defined ΣF (t) = E (ftf
′
t) and Σu (t) = E (utu

′
t).

Similarly to the above, we denote the k-th largest eigenvalue of Σm (t) as
λ(k) (t), the k-th eigenvalue of A (t) ΣF (t)A (t)

′
as γ(k) (t); and, finally, the k-th

eigenvalue of Σu (t) as ω(k) (t); similarly, we denote the k-th largest eigenvalue

of Σ̂m (t) as λ̂(k) (t). In order to derive our results on the population and sample
eigenvalues, we make the following assumptions.

Assumption 2 It holds that (i) γ(k) (t) = Ck (t)N for all 1 ≤ k ≤ r (t),
some finite Ck(t) > 0 and for m ≤ t ≤ T ; (ii) ω(k) (t) ≤ C0 for all 1 ≤ k ≤ N
and m ≤ t ≤ T .

Assumption 3 It holds that (i) E |Xi,t|4+ε ≤ C0 for 1 ≤ i ≤ N , 1 ≤ t ≤ T
and some ε > 0; (ii)

E max
t0≤t̃≤t0+m−1

∣∣∣∣∣∣
t̃∑
t=1

Xh,tXj,t − E (Xh,tXj,t)

∣∣∣∣∣∣
2

≤ C1m

for 1 ≤ h, j ≤ N and 1 ≤ t0 ≤ T −m.

Notes

• same as the previous assumptions in the first paper presented, and there-
fore...

• ... we constrain the amount of serial correlation that one can have in the
process {Xh,tXj,t}Tt=1 and therefore, albeit indirectly, in {Xi,t}Tt=1:

– recall that this assumption is satisfied by any linear process with
summable fourth cumulants. Some examples

∗ Volterra series;

∗ ARCH/GARCH processes, thus allowing for the case of condi-
tional heteroskedasticity.

The following result characterizes the behaviour of the population eigenval-
ues of Σm(t).
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Lemma 14. Under Assumptions 1 and 2, it holds that

λ(r+1) (t) ≤ C0, m ≤ t ≤ T, under H0. (57)

Further, it holds that

λ(r+1) (t)

 ≤ C0 m ≤ t < τ,
≥ C1

t−τ+1
m N τ ≤ t < τ +m,

≤ C0 τ +m ≤ t ≤ T,
under HA,1, (58)

λ(r+1) (t)

 ≤ C0 m ≤ t < τ,
≥ C1

t−τ+1
m N τ ≤ t < τ +m,

≥ C1N τ +m ≤ t ≤ T,
under HA,2. (59)

Consider now the slowly varying sequence at infinity:

l (m,N) = (lnN)
1+ε

(lnm)
1+ε
2 ,

where ε > 0. The sample counterpart to Lemma 14 is the following.

Lemma 15. Under Assumptions 1 and 3, it holds that

λ̂(r+1) (t) = λ(r+1) (t) +Oa.s.

(
N

m1/2
l (m,N)

)
, m ≤ t ≤ T. (60)

7 Testing procedure and asymptotics

Define δ ∈ [0, 1) such that

δ

{
> 0
> 1− 1

2
lnm
lnN

according as
N ≤ m1/2

N > m1/2 ; (61)

thus, the choice of δ is uniquely determined by N and m, with no need to
estimate anything.

We consider the statistic

φN,m (t) = g

(
N−δ

λ̂(r+1) (t)
1
N

∑N
k=1 λ̂

(k) (t)

)
, m ≤ t ≤ T, (62)

where

• g (·) is a monotonically increasing function such that g (0) = 0 and limx→∞ g (x) =
∞;

• we use g(a) = a, but other choices are also possible;

• the denominator in (62) makes the argument of g (·) scale invariant.

35



The results above imply - now it is too repetitious for our own good - that

lim
N,m→∞

φN,m (t) = g (0) = 0, w.p. 1, when N−δλ̂(r+1) (t)→ 0,

lim
N,m→∞

φN,m (t) = g (∞) =∞, w.p. 1, when N−δλ̂(r+1) (t)→∞.

Letting t∗N,m be a point in time such that

lim
N,m→∞

N1−δ

m

(
t∗N,m − τ + 1

)
=∞,

we therefore have that

lim
N,m→∞

φN,m (t) = 0, m ≤ t ≤ T, under H0,

while

lim
N,m→∞

φN,m (t) =


0 m ≤ t < τ,
∞ t∗N,m ≤ t < τ +m,

0 τ +m ≤ t ≤ T,
, under HA,1,

or

lim
N,m→∞

φN,m (t) =

{
0 m ≤ t < τ,
∞ t∗N,m ≤ t < τ +m,

, under HA,2;

between τ and t∗N,m − τ + 1, φN,m (t) is growing from 0 to ∞.
Given that the results above entail that we only have rates for φN,m (t), we

propose a to use a randomised version of it, built according to the following
steps.

Step A1. At each given t ≥ m, generate an i.i.d. sample
{
ξj(t)

}R
j=1

with

common distribution Gφ such that Gφ(0) 6= 0 or 1.

Step A2. For any u drawn from a distribution Fφ (u), define

ζj (u; t) = I
[
ξj(t) ≤ uφ−1

N,m (t)
]
.

Step A3. Compute

ϑ (u; t) =
1√
R

R∑
j=1

ζj (u; t)−Gφ (0)√
Gφ (0) [1−Gφ (0)]

.

Step A4. Compute

Θt =

∫ +∞

−∞
|ϑ (u; t)|2 dFφ (u) .
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Although the details of the behaviour of Θt under the null and the alternative
are spelt out later on, a heuristic preview of the main argument may be helpful.
In essence, under the alternative the Bernoulli random variable ζj (u; t) should
be equal to 1 or 0 with probability Gφ (0) and 1−Gφ (0) respectively, and thus
have mean Gφ (0). In this case, when constructing ϑ (u; t), a Central Limit
Theorem holds and therefore we expect Θt to have a chi-square distribution.
On the other hand, under the null ζj (u; t) should be (heuristically) 0 or 1 with
probability 0 or 1 (depending on the sign of u) - thus its mean should be different
than Gφ (0) (and equal to 0 or 1 depending on the sign of u) and a Law of Large
Numbers should hold. Note that, by construction, conditionally on the sample
the sequence {Θt}Tt=m is independent across t. In order to study Θt, we need
the following assumptions.

Assumption 4. It holds that: (i) Gφ (·) has a bounded density; (ii)∫ +∞
−∞ u2dFφ (u) <∞.

Assumption 5. It holds that, as min (N,m,R)→∞: (i)

R1/2

[
g

(
N1−δ t− τ + 1

m

)]−1

→ 0,
under HA,1, for t∗N,m ≤ t < τ +m,

under HA,2, for t∗N,m ≤ t ≤ T ;

(ii) R1/2
[
g
(
N1−δ)]−1 → 0 under HA,1, for τ +m ≤ t ≤ T .

Assumption 5 looks horrible. It is. But it implies, for example, that

• choosing R = N is valid, in principle,

• and it works very well in simulations.

Let now P ∗ represent the conditional probability with respect to {Xi,t, 1 ≤
i ≤ N , 1 ≤ t ≤ T}; “

D∗→” and “
P∗→” denote, respectively, conditional convergence

in distribution and in probability according to P ∗.

Theorem 16. Under Assumptions 1-5, as min (N,m,R)→∞, it holds that

Θt
D∗→ χ2

1,
under HA,1, for t∗N,m ≤ t < τ +m,

under HA,2, for t∗N,m ≤ t ≤ T,
(63)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T}.
Under Assumptions 1-4, as min (N,m,R)→∞, it holds that

1

R
Θt

P∗→
∫ +∞
−∞

∣∣I[0,∞) (u)−Gφ (0)
∣∣2 dFφ (u)

Gφ (0) [1−Gφ (0)]
,

under H0, for m ≤ t ≤ T,
under HA,1, for m ≤ t < τ,

and τ +m ≤ t ≤ T,
under HA,2, for m ≤ t < τ,

(64)
for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T}.
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The theorem

• is an intermediate result;

• the fact that Θt converges to a chi-square distribution would be potentially
useful if one wished to test for the (rather unusual) null of having a break

• but, it is necessary to have a statistic which diverges under the null and
is bounded under the alternative.

We therefore propose to randomise Θt, with a second randomisation based
on

ψN,m,R (t) = h

(
Θt

l̃ (N,m,R)

)
, m ≤ t ≤ T, (65)

where
l̃ (N,m,R) = (lnN)

2+ε
(lnm)

2+ε
(lnR)

2+ε
,

for some ε > 0 - in practice, any small value of ε works well.
In (65), the function h (·), similarly to g (·) in (62), is a monotonically in-

creasing function such that h (0) = 0 and limx→∞ h (x) = ∞; again, we use
h (a) = a.

Similarly to the case of φN,m (t), Theorem 16 entails that

lim
N,m,R→∞

ψN,m,R (t) =∞, m ≤ t ≤ T, under H0,

and

lim
N,m,R→∞

ψN,m,R (t) =


0 m ≤ t < τ,
∞ t∗N,m ≤ t < τ +m,

0 τ +m ≤ t ≤ T,
, under HA,1,

while

lim
N,m,R→∞

ψN,m,R (t) =

{
0 m ≤ t < τ,
∞ t∗N,m ≤ t < τ +m,

, under HA,2;

Consider now the second randomisation.

Step B1. At each given t ≥ m, generate an i.i.d. sample
{
ξ̃j(t)

}W
j=1

with

common distribution Gψ such that Gψ(0) 6= 0 or 1.

Step B2. For any u drawn from a distribution Fψ (u), define

ζ̃j (u; t) = I
[
ξ̃j(t) ≤ uψ−1

N,m,R (t)
]
.

Step B3. Compute

γ (u; t) =
1√
W

W∑
j=1

ζ̃j (u; t)−Gψ (0)√
Gψ (0) [1−Gψ (0)]

.
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Step B4. Compute

Γt =

∫ +∞

−∞
|γ (u; t)|2 dFψ (u) .

The following assumptions are needed in order to study the asymptotic be-
havior of Γt; note their similarity with Assumptions 4 and 5.

Assumption 6. It holds that: (i) Gψ (·) has a bounded density; (ii)∫ +∞
−∞ u4dFψ (u) <∞.

Assumption 7. It holds that, as min (N,m,R,W )→∞

W 1/2

[
h

(
R

l̃ (N,m,R)

)]−1

→ 0.

Let P † represent the conditional probability with respect to {Xi,t, 1 ≤ i ≤
N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤ T}; we use the notation “

D†→”

and “
P †→” to define, respectively, conditional convergence in distribution and in

probability according to P †.

Theorem 17. Under Assumptions 1-7, as min (N,m,R,W )→∞, it holds that

Γt
D†→ χ2

1,
under H0, for m ≤ t ≤ T,
under HA,1, for m ≤ t < τ and τ +m ≤ t ≤ T,
under HA,2, for m ≤ t < τ,

(66)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤
R, m ≤ t ≤ T}.
Under Assumptions 1-6, as min (N,m,R,W )→∞, it holds that

1

W
Γt

P †→
∫ +∞
−∞

∣∣I[0,∞) (u)−Gψ (0)
∣∣2 dFψ (u)

Gψ (0) [1−Gψ (0)]
,

under HA,1, for t∗N,m ≤ t < τ +m,

under HA,2, for t∗N,m ≤ t ≤ T,
(67)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤
R, m ≤ t ≤ T}.

Theorem 17 is, again, an intermediate result:

• Γt has (asymptotically) a chi-square distribution under the null of no
breaks;

• further, by construction the sequence Γt, m ≤ t ≤ T is independent across
t conditional on the sample.

• from these two basic facts we propose a monitoring scheme for the on-line
detection of breaks in the factor structure.
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7.1 Sequential monitoring of factor models

Recall that, after collecting m observations, we monitor our model over the
period m+1 ≤ t ≤ T , which has size denoted as Tm = T −m. We then consider
a monitoring procedure based on the detector

d (k;m) =

∣∣∣∣∣
m+k∑
t=m+1

Γt − 1√
2

∣∣∣∣∣ , 1 ≤ k ≤ Tm, (68)

which covers the entire monitoring period. In other words our detector is made
of the cumulative sum of the centered and standardized version of the sequence
{Γt}Tt=m, obtained by double randomisation.

Given the stopping rule

k̂m =

{
inf {1 ≤ k ≤ Tm such that d (k;m) ≥ ν (k;m)} ,
Tm if the above does not hold in the monitoring period.

(69)

we define the estimated change-point location as τ̂m = k̂m +m. The threshold
function in (69) is defined as (see ? and ?)

ν (k;m) = cα,mν
∗ (k;m) , (70)

ν∗ (k;m) = m1/2

(
1 +

k

m

)(
k

k +m

)η
, η ∈

[
0,

1

2

]
, (71)

where cα,m is a critical value corresponding to a pre-specified level α. Depending
on the choice of η, the critical value is defined as

P

(
sup

0≤t≤1

|B (t)|
tη

≤ cα,m
)

= 1− α, for η ∈
[
0,

1

2

)
, (72)

where {B (t) , 0 ≤ t ≤ 1} denotes a standard Wiener process, or

cα,m =
Dm − ln [− ln (1− α)]

Am
, for η =

1

2
, (73)

with Am = (2 ln lnm)
1/2

and Dm = 2 ln lnm + 1
2 ln ln lnm − 1

2 lnπ. Note that
in (72) cα,m does not depend on m, whilst it does in (73).

In order to derive our main theorem, we also need the following assumptions.

Assumption 8. It holds that (i) Tm = O (mκ) for some κ ≥ 1; (ii)

lim infm→∞
Tm
m > 0; (iii) Tm > τ + C0m

1/2+ε for ε > 0 such that N1−δ

m1/2−ε → C1.

Assumption 9. It holds that (i)
∫ +∞
−∞ |u|

4+2δ
dFψ (u) <∞; (ii)

m1/2+ε

W−1 +W

[
h

(
R

l̃ (N,m,R)

)]−2

+

[
h

(
R

l̃ (N,m,R)

)]−1
→ 0,

for some ε > 0.
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Theorem 18. Let Assumptions 1-9 hold. Under H0 it holds that, as min (N,m,R,W )→
∞

P †
(

max
1≤k≤Tm

d (k;m)

ν∗ (k;m)
≤ x

)
→ P

(
sup

0≤t≤1

|B (t)|
tη

≤ x
)
, for η ∈ [0,

1

2
), (74)

P †
(

max
1≤k≤Tm

d (k;m)

ν∗ (k;m)
≤ x+Dm

Am

)
→ e−e

−x
, for η =

1

2
, (75)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤
R, m ≤ t ≤ T} and for x ∈ (−∞,∞).
Under HA,1 and HA,2, as min (N,m,R,W ) → ∞, and for a given significance
level α, it holds that

c−1
α,m max

1≤k≤Tm

d (k;m)

ν∗ (k;m)

P †→∞, for all η ∈
[
0,

1

2

]
, (76)

where cα,m is defined in (72) when η < 1
2 and in (73) when η = 1

2 .

The main implication of the theorem is summarized in the following result:

Corollary 19. Under the assumptions of Theorem 18 it holds that:

lim
min(N,m,R,W )→∞

P † (τ̂m < T ) ≤ α, under H0, (77)

lim
min(N,m,R,W )→∞

P † (τ̂m < T ) = 1, under HA,1 and HA,2, (78)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤
R, m ≤ t ≤ T}.

Notes:

• the notion of size implied by (77), in this context, is very different from
the one usually considered in the literature;

• we wish to keep the false rejection probability as little as possible, and
therefore (at a minimum) below the threshold α, rather than making it
close to α.

• This makes the monitoring procedure different from the standard Neyman-
Pearson paradigm:

– given that the monitoring horizon keeps expanding, the purpose of
cα,m is to ensure that the chance of a false break detection is as little
as possible.
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0.1

DGP features
(N,T ) ρ = 0, b = 0 ρ = .5, b = 0 ρ = .5, b = .5

(50, 50)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.026
(2.40)
0.030
(3.00)
0.000
(0)

0.000
(0)

0.000
(0)

1.000
(100.0)
0.160
(12.0)
0.942

(69.00)
0.854

(36.40)
0.940

(39.80)

0.000
(0)

4.018
(100.0)
0.468

(28.20)
2.312

(100.0)
3.540

(100.0)
3.714

(100.0)

(25, 100)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.580
(18.0)
0.004
(0.40)
0.000
(0)

0.000
(0)

0.000
(0)

1.000
(100.0)
0.786

(37.60)
0.200

(19.00)
0.002
(0.20)
0.006
(0.40)

0.058
(5.60)
5.024

(100.0)
0.432

(28.40)
0.750

(62.00)
3.868

(100.0)
3.388

(100.0)

(25, 200)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.188
(4.60)
0.000
(0)

0.000
(0)

0.000
(0)

0.000
(0)

1.000
(100.0)
0.716

(26.60)
0.008
(0.80)
0.000
(0)

0.000
(0)

0.034
(3.40)
5.672

(100.0)
0.270

(19.40)
0.070
(6.80)
4.236

(100.0)
3.446

(100.0)

(50, 100)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.020
(1.40)
0.000
(0)

0.000
(0)

0.000
(0)

0.000
(0)

1.000
(100.0)
0.078
(6.40)
0.152

(14.00)
0.000
(0)

0.000
(0)

0.000
(0)

7.538
(100.0)
0.106
(8.80)
1.040

(76.40)
3.598

(100.0)
3.622

(100.0)

(50, 200)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.010
(0.40)
0.002
(0.20)
0.000
(0)

0.000
(0)

0.000
(0)

1.000
(100.0)
0.042
(3.60)
0.018
(1.80)
0.000
(0)

0.000
(0)

0.002
(0.20)
8.000

(100.0)
0.016
(1.60)
0.152

(14.80)
3.916

(100.0)
3.766

(100.0)

(200, 25)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.000
(0)

0.014
(1.40)
0.000
(0)

0.000
(0)

0.000
(0)

2.336
(100.0)
0.422

(13.40)
2.994

(100.0)
0.252
(8.80)
0.406
(12.0)

0.000
(0)

8.000
(100.0)
4.338

(97.20)
4.138

(100.0)
3.536

(100.0)
3.748

(100.0)

(200, 50)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.000
(0)

1.000
(100.0)
0.000
(0)

0.002
(0.20)
0.000
(0)

0.000
(0)

0.000
(0)

1.000
(100.0)
0.010
(1.0)
0.256

(23.60)
0.000
(0)

0.000
(0)

0.000
(0)

8.000
(100.0)
2.218

(70.40)
3.118

(100.0)
3.594

(100.0)
3.872

(100.0)

43



Determination of k: stationary case, k = 0.
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DGP features
k = 1 k = 3 k = 5

(N,T ) ρ = .5, b = 0 ρ = .5, b = .5 ρ = .5, b = 0 ρ = .5, b = .5 ρ = .5, b = 0 ρ = .5, b = .5

(50, 50)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

0.996
(0.40)
1.002
(0.20)
1.144
(9.60)
1.418
37.60
1.004
(0.40)
1.003
(0.30)

1.002
(0.20)
4.870

(93.40)
1.378

(25.40)
2.452

(90.20)
1.008
(0.80)
1.006
(0.60)

3.012
(1.20)
5.868
(92.0)
3.106
(9.0)
3.399
(37.2)
2.999
(0.50)
2.998
(0.10)

2.938
(6.20)
8.000

(100.0)
3.232

(20.60)
3.396

(37.20)
2.816

(16.40)
2.902

(10.60)

4.982
(1.00)
5.004
(0.40)
5.056
(4.80)
5.000
(0)

4.998
(0.20)
4.998
(0.20)

5.078
(16.80)
7.318
(93.0)
4.488

(22.00)
4.944
(7.20)
4.730

(20.40)
4.82

(18.60)

(25, 100)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

1.000
(0)

1.000
(0)

1.706
(36.80)
1.062
(6.20)
1.000
(0)

1.000
(0)

1.002
(0.20)
4.516

(69.80)
1.350

(26.60)
1.266

(25.20)
1.004
(0.40)
1.002
(0.20)

2.992
(0.80)
4.912

(72.80)
3.440

(27.20)
3.136

(13.00)
3.000
(0)

3.000
(0)

2.988
(3.40)
8.000

(100.0)
3.068
(16.0)
3.478

(43.60)
2.936

(11.40)
3.010
(9.00)

5.002
(0.20)
5.004
(0.40)
5.048

(14.40)
5.000
(0)

5.000
(0)

5.000
(0)

5.096
(39.60)
7.492

(91.20)
3.700

(32.40)
4.770

(23.00)
4.586

(34.20)
4.702

(28.20)

(25, 200)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

1.000
(0)

1.000
(0)

1.626
(27.80)
1.000
(0)

1.000
(0)

1.000
(0)

1.002
(0.20)
5.200

(63.20)
1.192

(15.20)
1.014
(1.40)
1.010
(0.90)
1.008
(0.80)

3.000
(0)

3.044
(4.00)
3.384

(24.20)
3.006
(0.60)
3.000
(0)

3.000
(0)

2.998
(0.20)
6.494

(77.80)
3.060

(11.40)
3.000
(0)

3.000
(0)

3.000
(0)

5.000
(0)

5.000
(0)

5.186
(16.20)
5.000
(0)

5.000
(0)

5.000
(0)

4.756
(30.20)
7.572

(90.40)
3.806

(25.80)
4.660
(34.0)
4.586
(41.0)
4.654

(34.60)

(50, 100)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

1.000
(0)

1.000
(0)

1.062
(5.20)
1.046
(4.60)
1.000
(0)

1.000
(0)

1.000
(0)

7.648
(99.60)
1.090
(8.60)
1.474

(43.40)
1.005
(0.50)
1.008
(0.80)

2.998
(0.20)
5.102
(83.4)
3.048
(4.20)
3.046
(4.60)
3.000
(0)

3.000
(0)

3.018
(4.20)
7.842

(100.0)
3.054
(5.0)
3.048
(4.80)
2.934
(3.80)
2.996
(0.40)

4.980
(1.20)
5.000
(0)

5.042
(3.20)
5.000
(0)

5.000
(0)

5.000
(0)

4.968
(3.60)
7.918

(99.60)
4.872
(5.20)
5.000
(0)

5.000
(0)

5.000
(0)

(50, 200)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

1.000
(0)

1.000
(0)

1.026
(2.40)
1.002
(0.20)
1.000
(0)

1.000
(0)

1.000
(0)

8.000
(100.0)
1.012
(1.20)
1.020
(2.00)
1.004
(0.40)
1.003
(0.30)

3.000
(0)

3.028
(2.80)
3.026
(2.0)
3.006
(0.60)
3.000
(0)

3.000
(0)

3.000
(0)

8.000
(100.0)
3.006
(0.60)
3.042
(4.20)
3.000
(0)

3.000
(0)

5.000
(0)

5.000
(0)

5.022
(2.20)
5.000
(0)

5.000
(0)

5.000
(0)

5.000
(0)

8.000
(100.0)
4.996
(0.80)
5.000
(0)

5.000
(0)

5.000
(0)

(200, 25)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

1.000
(0)

3.602
(72.80)
1.408

(14.60)
2.970

(96.80)
1.012
(1.20)
1.004
(0.40)

1.060
(6.20)
8.000
(100)
4.540

(94.80)
3.176

(98.60)
1.014
(1.60)
1.012
(1.20)

2.996
(0.40)
6.856

(94.80)
3.306

(15.20)
3.208

(19.80)
2.994
(0.60)
2.998
(0.20)

3.144
(14.0)
7.992

(100.0)
5.408
(89.0)
4.148

(85.20)
2.846

(14.80)
2.930

(11.20)

4.782
(7.0)
7.758

(98.20)
5.142
(11.0)
5.002
(0.20)
4.972
(2.60)
4.984
(1.60)

4.718
(30.0)
8.000

(100.0)
6.036

(71.80)
5.176

(23.20)
4.492
(39.0)
4.874

(34.80)

(200, 50)

k̂-average
(% wrong)
BN -average
(% wrong)

ABC-average
(% wrong)
ON -average
(% wrong)
ER-average
(% wrong)
GR-average
(% wrong)

1.000
(0)

1.000
(0)

1.002
(0.20)
1.070
(6.60)
1.000
(0)

1.000
(0)

1.000
(0)

8.000
(100.0)
2.710

(64.40)
3.156

(99.20)
1.012
(1.20)
1.013
(1.30)

3.008
(0.80)
8.000

(100.0)
3.002
(0.20)
3.476

(42.40)
2.998
(0.20)
2.998
(0.20)

2.940
(2.60)
8.000

(100.0)
4.174
(56.0)
3.552
(50.2)
2.998
(0.20)
2.998
(0.20)

4.986
(1.20)
5.004
(0.40)
5.002
(0.20)
5.000
(0)

5.000
(0)

5.000
(0)

5.032
(4.20)
8.000

(100.0)
5.638

(47.20)
5.018
(1.80)
4.994
(1.00)
5.002
(0.60)
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