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What Does Big Data Mean?

1 Big Data and Big Models
• Big Data-Micro; Big Data Macro/Time series!
• Mostly variable selection: Multiple Indicators, Latent

Objects.

2 Latent Objects:
• Well-being; Happiness, Permanent Income, Expectations.
• What about Data Generation Process (DGP) as a “Latent

Object”?

3 Common Themes
• More Variables than Observations p >> n
• RELATED: Shrinkage, Penalization, Averaging, Model

Selection, model uncertainty, Misspecification
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The ProtoType Case: Variable Selection

1 Outcome Y, Target T, Variable Set X of p vars
• WRITE THE model. formulae here with definitions.
• This is typically a linear “MODEL”!
• Estimation and Big Data strategies: Shrinkage, LASSO,

Other Penalization methods.
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Inference

1 Best Practice Inference Theory
• Exemplified by Victor Chernozhukov and coworkers.
• Asymptotic Inference, especially for p > n.
• I will advertize my old work in this area Below!!:)
• Ridge Regression; Stein; shrinkage estimation and

forecasting in systems of equations; LASSO

2 “Bayesian” Interpretation; Extraneous Statistical
“Information” (important);

• Model selection and uncertainty.
• What do we want to learn or do? (KEY question)
• “Causal”? Policy analysis/decision making needs this.
• Trearment effect and Program/policy evaluation
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Mechanism vs. Blackbox Prediction vs. Indexing

1 Aggregation-Indexing Multiple Indicators
• Aggregate-“average” all Xs. Not “causal”
• What is “average”? An “INDEX”
• Classic Index Number Problem
• Aggregation-Averaging of Models is related, but not the

same

2 Models for Mechanism Learning
• Many Moments Paradigm (GMM)
• Empirical Likelihood-Information Theory
• Hopeless!? All models are Misspecified
• The Map allegory!
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WHAT I HOPE TO PRESENT HERE

1 Variable selection (Brief)

2 Examples of Penalization, Shrinkage, Ridge, LASSO,
Moment selection, pre-testing, model uncertainty,...

• Work that I have done since 1974
• Extraneous Statistical vs. Bayesian Interpretation

3 Aggrgegation-Indexing
• Multiple Indicators of Well-Being
• Maasoumi (1986. Econometrica)
• Finally: Model Averaging as Indexing, when all are

misspecified
• Gospodinov-Maasoumi (2016)
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Outline Introduction Analysis in Low Dimensional Settings Analysis in High-Dimensional Settings Bonus Track: GenaralizationsConfronting Model Selection An Example: Effect of Institutions

Introduction

I Richer data and methodological developments lead us to
consider more elaborate econometric models than before.

I Focus discussion on the linear endogenous model

yi

outcome

= di

treatment

effect

α +

p∑
j=1

xijβj

controls

+ εi
noise

, (1)

IE[εi | xi , zi

exogenous vars

] = 0.

I Controls can be richer as more features become available
(Census characteristics, housing characteristics, geography, text
data)

⇐ “big” data
I Controls can contain transformation of “raw” controls in an effort

to make models more flexible
⇐ nonparametric series modeling, “machine learning”

Victor Chernozhukov Mostly Dangerous
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Introduction

I This forces us to explicitly consider model selection to select
controls that are “most relevant”.

I Model selection techniques:
I CLASSICAL: t and F tests
I MODERN: Lasso, Regression Trees, Random Forests, Boosting

If you are using any of these MS techniques directly in (1),
you are doing it wrong.

Have to do additional selection to make it right.

Victor Chernozhukov Mostly Dangerous
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Outline Introduction Analysis in Low Dimensional Settings Analysis in High-Dimensional Settings Bonus Track: GenaralizationsEffects of Institutions Revisited Effect of Abortion on Murder Rates

Solution: Post-double selection

I Post-double selection procedure (BCH, 2010, ES World
Congress, ReStud, 2013):

Step 1. Include xi if it is a significant predictor of yi as judged by a
conservative test (t-test, Lasso etc).

Step 2. Include xi if it is a significant predictor of di as judged by a
conservative test (t-test, Lasso etc). [In the IV models must include
xi if it a significant predictor of zi ].

Step 3. Refit the model after selection, use standard confidence intervals.

Theorem (Belloni, Chernozhukov, Hansen: WC ES 2010,
ReStud 2013)
DS works in low-dimensional setting and in high-dimensional
approximately sparse settings.

Victor Chernozhukov Mostly Dangerous



Stein, Baranchik, Hoerl, Maasoumi, Andrews, Hanson,
Chernozhukov, Zellner, Durbin-Theil-Goldberger,...

1 • Generic Reduced Forms,
• MSRF. (Mixed Estimators)
• 3SLS Ridge-Like (1981 JoE); d = a/n
• BY ′ + CZ ′ = AX ′ = U ′

• GRF: Y ′ = PZ ′ + V ′, BP + C = D , D not necessarily = 0
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2. THE MSRF ESTIMATOR 

Consider the structural model: 

(1) BY'+ CZ'= AX'= U' 

where A = [B. C] is the n X (n + m) matrix of unknown coefficients, X = [Y Z] 
is the matrix of T observations on the n endogenous and the m non-stochastic 
exogenous variables such that limTO00 (Z'Z/ T) = M is finite and non-negative 
definite. U represents the T values of n serially independent disturbance terms 
such that U., -IIN(O, QU) and !2, is non-singular. The corresponding reduced 
form model is: 

(2) Yt=PZt+ Vt (t= 1, ..., T) 

where P= -B-1C and E(VtV) =B lBQUB'-1 = Q. Denote the 3SLS estimate 
of A by At (with parameter constraints imposed). The following Wald type 
asymptotic test is employed to test the validity of the parameter constraints (and 
specification) on A : 

(3) tr (n2 lAt(X'Z)(Z'Z)-l(Z'X)A't) ~ 2 

Where (22 is a consistent estimate of Q, (usually the 2SLS) and N is the total 
number of over-identifying degrees in (1). However, the following, asymptotic- 
ally equivalent, test is developed in terms of the 3SLS reduced form estimates 
pt Bt-lCt: 5 

(4) Ot = tr [W1(P-Pt)(Z'Z)(P P X)N] aX 

where W = Y'[I - Z(Z'Z)1Z1 Y/ T is a consistent estimate of 2D, and P= 
(Y'Z)(Z'Z)-1 is the LS estimate of p.6 

For large sample sizes, the specifying restrictions are rejected if Ot or (3) 
exceed an appropriate critical value of the test. However, for small samples, 
asymptotic tests such as (3) and (4) lead to unduly high rates of rejection even for 
reasonably specified models.7 Moreover, in this uncertain situation the 
unrestricted LS (P) estimator may perform quite well. Given the above small 
sample problem we may wish to combine the unrestricted with the restricted 
estimator and allow the test result to determine the weights attached. 
Consequently the following estimator is proposed: 

(5) P*=PT+(1-)P 
Pt + (1- A )(P -Pt) 

4E.g., see E. Malinvaud [10, Ch. 9, pp. 358-360]. 
5Ibid., f.n. (3); also refer to Section 4 of this paper. 
6Also note that: At(X'Z)(Z'Z)-Y = Bt(Y'Z -PtZ'Z)(ZZ)-l = Bt(P pt) 
7 R. L. Basmann [3] reports on this phenomena using a similar 2SLS test. Also the author has 

observed close to 35 per cent rate of rejection when small samples were applied to (4) in Monte Carlo 
experiments. 
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STEIN-LIKE ESTIMATOR 697 

Note that: 

(6) * -tr [ W l(pP*)(ZtZ)(P_P*)u] = A 2 t 

Then if C, is the chosen critical value of the test, we choose A such that 

1 if t< Cp (hypothesis accepted), 
A = 2 (+t) or (2 if 4t>Cp, 

whereO2 '< Cp and may be chosen so as to minimize a desired quadratic loss 
measure. The similarity of P* to the Stein-like estimators is seen from the 
following: 

(7) P*= Pt +I 1- 1 (P- Pt) 

in which I( ) = 1 if 0t > Cp and zero otherwise. 

3. THE MOMENTS 

The following theorem demonstrates the existence of the first (T - n - m) 
moments of the MSRF estimator. The methodology is similar to Sargan [14] and 
could be applied to obtain comparable results for other Stein-like estimators.8 

THEOREM 1. The integral moments, up to order r - T - n - m, of the MSRF 
reduced form estimator are uniformly bounded as T -> oo. 

PROOF: From the definition of P* it follows that: 

(8) 0*=tr [TW1(P-P*)( T )(.P)] 

The left-hand side of (8) is expanded using the identity P* - = 
(P*- P) - (P - P). We also note that by Cauchy's inequality: 

tr [TW l(P* - P)M(P-P)'] 

< {tr [TWl(P* - P)M(P* - P)']}2 * {tr [TW-1(A-P)M(P - 

Then: 

(9) {tr [TW 1(P* -P)M(P* - P)']}2 -{tr [TW 1(P- P)M(P -P)']}2 + Cp. 

Let y = '/Tf' vec (P* -P) be an arbitrary linear function of the elements of 
(P* - P). Then we note that [(QJ 1 (0 M) -ff'/AM] is non-negative definite where 
AM = f'(Qv 0 M1)f is the only non-zero (largest) root of [ff'-A (QJ1 0 M)]Z = 
0. Let k = tr [TJ l(P* - P)M(P* -P)u]; it follows that: 

(10) l2y AS A and E(IyIr) ALE(&r) 

8This would certainly be true for the test-based variety such as the "positive rule" and "pre-test" 
estimators. 
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1 Introduction

• Compare Three moment selection approaches, followed by

post selection estimation strategies.

• 1. Adaptive Lasso of Zou (2006), extended by Liao (2013)

to possibly invalid moments in gmm. We select valid in-

struments.

• 2. J test, as in Andrews and Lu (2001).

• 3. Penalized Continuous Updating (cue), based on Hong

et al. (2003) with penalized generalized empirical likelihood.

[e.g., empirical likelihood, and exponential tilting].

1



• Final Stage Estimation:

• 1. Unpenalized gmm; Information criteria in Andrews

(1999)

• 2. Unpenalized cue

• 3. Model averaging technique of Okui (2011).

• Simulations: Which selection criterion can better select

valid moments and/or eliminate invalid ones?

• Given the chosen IVs, which strategy delivers better finite

sample performance?

• Bottom Line: Adaptive Lasso in model selection stage, cou-

pled with either unpenalized gmm or moment averaging of

Okui delivers generally the smallest rmse.
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2 Choices/Strategy/Literature

• Adaptive Lasso, computational advantages in large scale

problems, Penalized methods in Andrews (1999) and Hong

et al. (2003) not computationally advantageous, favored to

determine valid IVs.

• In the final stage employ Okui (2011) model averaging for

better Mean Squared Error, and smaller bias, compared to

unpenalized gmm and cue estimation.

3



• Shrinkage; is Eclectic, Misspecified Models, computational

efficiency in high-dimensions. Hastie et al. (2009, section 3.6)

conclude shrinkage better in model selection in reducing es-

timation error.

• Liao (2013) show gmm shrinkage procedures have the ora-

cle property in selection; adding additional valid moments

improves efficiency for strongly identified parameters.

• Cheng and Liao (2012) proposed a weighted tuning param-

eter to shrink invalid and redundant moments.
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• Assuming Valid IVs, Belloni, Chernozhukov and Hansen

(2011) utilize lasso-type estimators in the many iv case,

asymptotic oracle-efficiency. Caner (2009) and Caner and

Zhang (2013) use shrinkage for model selection in a gmm.

• Weak ivs (Hausman et al. (2005); Andrews and Stock (2007)).

Cheng and Liao (2012) suggest shrinkage is robust in dis-

carding invalid ivs, but tends to retain redundant ones.
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• Monte Carlo simulations allow combining several complex-

ities:

• linear settings,

• small and large sample sizes,

• fixed and increasing number of moment conditions,

• weak and strong identification,

• local-to-zero moment conditions,

• homoskedastic and heteroskedastic errors.

6



3 Theoretical Framework

3.1 Moment Selection Methods

– Sequence of rv {Zi}ni=1 , unknown probability distribu-

tion.

– Selecting r valid moments from q candidates. A min-

imum of s ≥ p valid moments required to identify θ;

p ≡ dim(θ); q has two types, for i = 1, . . . , n

E[gS(Zi, θ
0)] = 0 S = {1, . . . , s} (1)

E[gSc(Zi, θ
0)]

?
= 0 Sc = {s + 1, . . . , q} (2)

the sign
?
= , relationship MAY not hold for some in Sc.

7



– r = s + sv, where s KNOWN valid moments, sv valid

moments in the remaining q− s; Sc moments that may

or may not be valid.

– θ0 “the true” of dimension p;

– Empirical Moments gn(Zi, θ) : Θ 7→ Rq = (1/n)
∑n

i=1 g(Zi, θ)

converges in probability to g0(Zi, θ) as n→∞,

– a random weighting matrixWn of dimension equal to No.

of moments, Correct moment conditions is s.t. g0(θ0) =

0 .

8



– The standard gmm estimator of θ0, θ̂n is

θ̂n ≡ argmin
θ∈Θ

J(θ, W̄n),

where W̄n is a p × p symmetric and positive definite

weight matrix and the objective function (Hansen, 1982)

is

J(θ, W̄n) ≡ n · gn(θ)′W̄ngn(θ), (3)

with gn(θ) = n−1
∑n

i=1 g(Zi, θ), and Θ is a compact

subset of Rp. Let g(Zi, θ) = gi(θ).

9



4 The Model

–

y = Y θ0 + ε (4)

Y = Zπ0 + u (5)

y is n× 1 vector, Y is a n× p endogenous vars, Z is an

n×q instruments, ε and u are unobserved with constant

second moments And Correlated with each other.

– Instruments Zi1 (s× 1) are valid and Zi2 (q− s× 1) are

suspect-invalid.

10



∗ The sample moments:

gn(θ, β) =
1

n

n∑
i=1

gi(θ, β),

where gi(θ, β) = (gi1(θ)′, gi2(θ, β)′)′ with

gi1(θ) = Zi1(yi − Yiθ),

gi2(θ, β) = Zi2(yi − Yiθ)− β.

11



Wn =
1

n

n∑
i=1

gi(θ̃, β̃)gi(θ̃, β̃)′,

where θ̃, β̃ are the first step GMM estimators with Iq as

the weight matrix.

∗ Adaptive gmm Shrinkage (Liao, 2013); advantage of

selecting valid moments and estimate θ in a single

step; adding a slackness parameter vector β0 (2):

E

 gi1(θ0)

gi2(θ0, β0)

 = 0.

∗ verified by testing β0 = 0. Condition j is valid if

β0j = 0, for j = 1, · · · q − s.

12



∗ Adaptive Lasso:

(θ̂alasson , β̂alasson ) = argmin
(θ,β)∈Θ×B

gn(θ, β)′Wngn(θ, β) + λn

q−s∑
j=1

ω̂j|βj|


(6)

weights ω̂j = 1
|β̃j |

, and β̃j is the unpenalized standard

gmm estimator using all q moments.

∗ Adaptive lasso (alasso) penalizes slackness param-

eter by its l1 norm; Has the oracle property (β0j is

shrunk to zero for valid moments); can be solved by

using the lars algorithm (Efron et al., 2004). Shrink-

age by tuning parameter λn ≥ 0; large values shrink

more, and λn = 0 corresponds to gmm.

13



4.1 GMM Information Criteria

∗ The second msc is a Penalization of J -

∗ c ∈ Rq−s denotes a moment selection vector of zeros

and ones, if jth moment is valid, the jth element of

c is one,

∗ |c| =
∑q−s

j=1 cj number of moments selected by c;

∗ Zic vector Z from which the jth element is deleted if

corresponding jth element in c is zero.

∗ Corresponding weight matrix is W̄ c
n of dimension s+

|c| × s + |c|.

14



∗ The msc estimator objective function has the general

form:

mscn(c) = Jc(θ, W̄
c
n)− h(|c|)κn, (7)

where Jc(θ, W̄
c
n) = gn(θ)′W̄ c

ngn(θ) uses the s + |c|

moments in gmm objective function. gn(θ) is defined

immediately below equation (3).

∗ In (7), W̄ c
n = n−1

∑n
i=1ZicZ

′
icε̄

2
i , where ε̄i = yi− Yiθ̄,

∗ and θ̄ is inefficient gmm and Zic.

15



∗ EXAMPLE: consider two potentially valid IVsZ1, Z2;

Possible combinations are Z1 only, Z2 only, Z1, Z2;

For Z1 only, get inefficient GMM for weight matrix,

then efficient GMM; Repeat the same for Z2, and

then for Z1, Z2; choose minimizer of (7).

∗ Andrews (1999) uses h(|c|) = |c|− p and three differ-

ent choices of κn: (aic, bic, Hannan-Quinn)

gmmbic: mscbic,n(c) = Jc(θ, W̄
c
n)− (|c| − p) lnn

gmmaic: mscaic,n(c) = Jc(θ, W̄
c
n)− 2 (|c| − p)

gmmhqic: mschqic,n(c) = Jc(θ, W̄
c
n)− 2.1 (|c| − p) ln lnn

16



∗ We examine gmmbic method; bic gives consistency

in both adaptive lasso and Andrews and Lu (2001).

∗ We only use cue objective function due to poor per-

formance of empirical likelihood and exponential tilt-

ing, as shown in Hong et al. (2003), weight matrix is

updated continuously: Wn,cue = n−1
∑n

i=1ZicZ
′
icε

2
i ,

where εi = yi − Yiθ.
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4.2 Parameter Estimation

∗ for a shrinkage parameter m define Pm = PZI +

mPZII and the stsls as

θ̂stslsn,s = (Y ′PmY )−1Y ′Pmy,

∗ ZI is s valid moments; ZII selected by an information

criterion such as alasso or gmm. m is chosen to

minimize Nagar (1959)-type approximation of MSE.
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5 Monte Carlo Simulations

∗ The DGP in (4) and (5); Only one endogenous vari-

able, true θ0 = 0.5; (Z, ε, u) ∼ N(0,Σ) where

Σ =


σ2
zzIq σ

′
Zε 0′q

σZε σ2
ε σεu

0q σεu σ2
u


is (q + 2) × (q + 2) symmetric, σ2

zz is variance of

IVs Iq an identity matrix of order q, σZε is a q × 1

vector of correlations between the instruments and

the structural error, 0q is a q× 1 vector of zeros, σεu,

σ2
ε and σ2

u are scalars.
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∗ Heteroskedastic errors

ε∗i = εi ‖Zi‖ , with ‖Zi‖ =
√
Z2
i1 + · · · + Z2

iq

∗ A moment is valid if E[g(Zi, θ0)] = E[Z ′i(y−Y θ0)] =

E[Z ′iε] = σZε = 0;

∗ Invalid moments: Construct σZε vectors in two ways:

∗ (1) constant correlation D 6= 0, and (2) local to zero

correlation of the form 1/n, 1/
√
n and 1/ 3

√
n to ex-

plore different convergence rates.

∗ ε∗i = εi is homoscedastic.
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∗ Setup 1: Simulate fixed number of moments: q = 11,

s = 3 and r = 7; 11 total moments, 3 of them are

valid, select from 8, 4 valid and 4 invalid; homoskedas-

tic errors.

∗ Setup 2: number of valid moments increase with sam-

ple size: q =
√
n, s =

√
q and sv = (q−s)/2, choose

among q − s candidates, half valid. Errors are het-

eroskedastic.

∗ In Setup 1, Σ is a 13×13 matrix constructed: simulate

Z ∈ R11 in three categories: IVs known to be strong

and valid (s = 3); in next set of instruments first four

instruments valid (sv = 4), the last q− r = 4 invalid.
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∗ The last elements of Σ areσZε = (0, 0, 0, 0, 0, 0, 0, D,D,D,D)

in the constant correlation case, andσZε = (0, 0, 0, 0, 0, 0, hn,
h√
n
, h

3√n,
h
n)

in the local to zero scenario.

∗ We use three rates for the local to zero moments which

are recycled as needed. We set σ2
ε = 1, σ2

u = 0.5,

D = 0.2 and h = 1.
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∗ For each correlation structure, weak and strong iden-

tification on π0 in equation 5: Strong identification

π0 = 2 ·111, Weak identification case π0 = (2 ·13, 0.2 ·

18) with 1` being a row vector of ones of length `.

∗ Variance of IVs σ2
zz = {0.5, 1.0} · Iq; covariance be-

tween errors σεu = 0.5.

∗ Two cases: in Case 1 σ2
zz = 0.5 · Iq and covue = 0.5,

in the Case 2 σ2
zz = 1.0 · Iq and covue = 0.5.

∗ We have other cases for the covariance matrix: Case

3 σ2
zz = Iq and covue = 0.5, in Case 4 σ2

zz = Iq and

covue = 0.9; Case 5 σ2
zz = 2 · Iq and covue = 0.5;

Case 6 σ2
zz = 2 · Iq and covue = 0.9. These cases and

the local-to-zero ones are available on request.

∗ Sample sizes n = {50, 100, 250}.1000 repetitions.
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6 Results

∗ Focus only on most relevant and salient: Cases 1 and

2 for Setups 1 and 2, constant correlation invalid mo-

ments. Generally results hold across all the alterna-

tive setups.

∗ weak and strong identification cases with σ2
zz = 0.5Iq

and σ2
zz = 1Iq,

∗ The R2 of the first stage regression is in Table ??,

Ranges from 0.533 to 0.944, depending on strength of

identification and number of obs. More than NINE

parameter estimates:
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∗ For efficient gmm we have three estimators:

∗ gmm is the gmm estimator using the full set of mo-

ments,

∗ gmmpen–ma uses the penalized gmm estimator in

Andrews and Lu (2001) for model selection, followed

by Okui’s moment averaging estimator.

∗ gmmpen–gmm selects moments in the same way but

then parameter estimated by efficient gmm.
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∗ cue denotes the cue estimator using the full set of

moments,

∗ cuepen–ma is obtained by selecting with penalized

cue criteria and moment averaging estimator

∗ and cuepen–cue selects moments by penalized cue

and estimates θ0 by cue.

∗ Summary is presented in Tables 1 and 2 for model

selection and post selection estimation.
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∗ In Table 1: Average ranking of each method by Prob-

ability of Selecting the Exact valid moments detailed

in Tables ?? and ?? for each sample size and identi-

fication strength.

∗ Adaptive Lasso is the best for “perfect” moment se-

lection.

Table 1: Summary of the Performance of the Moment Selection Techniques

Setup 1 Setup 2
alasso 1.25 1.33
gmmpen 2.58 2.67
cuepen 1.83 1.92

Average ranking based on probability of selecting the exact valid moments. The latter are in Tables ?? and ??, by
sample size and strength of identification. In case of a tie, same ranking (we can have two first or two second places).
alasso, gmmpen and cuepen stands for adaptive lasso, penalized gmm and penalized cue respectively.
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∗ Table 2 performance of the final stage estimation by

rmse.

∗ Rankings relative performance from Tables ?? to ??,

by sample size and identification. Estimator with

Smallest value has Rank 1; Average Rankings range

from 1 to 9, frequency of being in the Top Three from

0 to 12.

∗ From Table 2 Adaptive Lasso is best to select, fol-

lowed by moment averaging (alasso–ma).

∗ Moment averaging procedure improves estimation for

the three moment selection techniques.

∗ Worst estimators are based on cue.

∗ In hetero setup (Setup 2) Adaptive Lasso-ma + mo-

ment averaging is still best in RMSE, but not as good

as in the homoskedastic case (Setup 1).
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Table 2: Summary of the Performance of the Post Selection Techniques

Setup 1 Setup 2
Average Times at the Average Times at the
Ranking top three Ranking top three

alasso–ma 1.17 12 1.75 11
alasso–gmm 2.00 12 2.25 11
alasso–cue 4.83 4 4.08 5
gmm 4.33 3 5.67 1
gmmpen–ma 1.67 12 2.50 9
gmmpen–gmm 3.00 8 3.00 7
cue 6.33 0 7.08 0
cuepen–ma 1.92 11 2.83 7
cuepen–cue 4.25 5 5.08 2

The performance is analyzed in terms of the rmse. The rankings are based in the relative performance in the Tables
?? to ??. The estimator with the smaller value takes the rank of 1. If there is a tie the estimators are given the same
rank. The average ranking ranges from 1 to 9 and the times at the top three from 0 to 12. alasso–ma is the estimator
obtained by selecting the moments using the Adaptive Lasso method in the first stage and then using Okui’s moment
averaging estimator in the second stage. alasso–gmm and alasso–cue are the estimates using adaptive lasso to select
the valid moments in the first stage and then use them in the efficient and unpenalized cue and gmm respectively. For
the efficient gmm we have three estimators: gmm is the gmm estimator using the full set of moments, gmmpen–ma uses
the penalized gmm estimator in Andrews and Lu (2001) for model selection and then use Okui’s moment averaging
estimator in the first stage. gmmpen–gmm selects the moments in the same way as the previous methods but then the
structural parameter is estimated using efficient gmm. In the same way, cue denotes the cue estimator using the full
set of moments, cuepen–ma is the estimator obtained by selecting the moments using the penalized cue criteria and
using these moments in the moment averaging estimator and cuepen–cue selects the moments using penalized cue
and estimates θ0 using the cue estimator.
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A Taxonomy of Misspeci�ed Models

Bernando and Smith (1994) characterize and taxonomize the di¤erent
views regarding model comparison and selection.

1 The �rst perspective, that includes Bayesian model averaging and
model selection, is conditioning on one of the models being �true�.

in this approach, the ambiguity about the true model is resolved
asymptotically and the mixture, that summarizes the beliefs about the
individual models, assigns a weight of 1 to one of the models.

2 Another possibility is also to assume that a true model exists but it is
too complicated or cumbersome to implement.

i.e., all of the candidate models are viewed as approximations of this
fully-speci�ed belief model and hence misspeci�ed.

3 The third view dispenses completely with the notion of a true model
and treats the candidate models as genuinely misspeci�ed either
because they are believed to represent di¤erent aspects of the
underlying DGP or because the underlying structure is completely
unknown.
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Model Aggregation (Gospodinov and Maasoumi, 2016)

Suppose there are M proposed misspeci�ed models, ŷi = yi (γ̂i ),
i = 1, ...,M, for the undiscovarable true model m.
Each model is treated as an incomplete �indicator�of the latent DGP.
Then, a model averaging rule would aggregate information from all of
these models and construct a pseudo-true model ỹ .
We are interested in �nding the aggregator ỹt with a distribution that
is as close as possible to the multivariate distribution of ŷi�s.
Maasoumi (1986) generalizes the pairwise criteria of divergence to:

Dρ(ỹ , ŷ ;w) = ∑M
i=1 wi

�
∑T
t=1 ỹt

��
ỹt
ŷi ,t

�ρ

� 1
��

ρ(ρ+ 1)
�
,

The aggregator that minimizes Dρ(ỹ , ŷ ;w) subject to ∑M
i=1 wi = 1 is

ỹ �t ∝
h
∑M
i=1 wiy

�ρ
i ,t

i�1/ρ
.

Linear pooling of models is obtained as a special case when ρ = �1.
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Model Aggregation

Two methods for estimating w and ρ.
1 Method 1: HJ-distance approach

For given (ŷ1,t , ..., ŷM ,t )0, construct the pricing errors of the aggregator

ẽT (w , ρ) =
1
T ∑T

t=1 Rt
h
∑M
i=1 wi ŷ

�ρ
i ,t

i�1/ρ
� 1N .

The unknown parameters θ = (w 0, ρ)0 are obtained by minimizing the
HJ-distance of ẽT (θ) subject to wi � 0 and ∑Mi=1 wi = 1.

2 Method 2: minimizing the distance between two distributions.
Let p be the density of some pivot and q denote the density of the

aggregator ỹt (θ) =
h
∑M
i=1 wi ŷ

�ρ
i ,t

i�1/ρ
.

Within the Cressie-Read family, minimize the Hellinger distance

H =
1
2

Z �
p1/2(x)� q1/2(x)

�2
dx ,

subject to the relevant restrictions, to obtain an estimate of θ.
the Hellinger distance is a proper measure of distance since it satis�es
the triangular inequality.

Nikolay Gospodinov (Atlanta Fed) Econometrics of Asset Pricing: Part II April 1, 2016 12 / 72


	BigDataIranV2
	BigDataAGGREgselect1
	BigDataCHERNOselect
	Introduction
	Confronting Model Selection
	An Example: Effect of Institutions

	Analysis in Low Dimensional Settings
	Effects of Institutions Revisited
	Effect of Abortion on Murder Rates

	Analysis in High-Dimensional Settings
	Lasso as a Selection Device
	Uniform Validity of the Double Selection

	Bonus Track: Genaralizations

	BigDataIran3
	MSRFpresentationpages
	Article Contents
	p. 697
	p. 698


	CanerMaasIRAN1
	Introduction
	Choices/Strategy/Literature
	Theoretical Framework
	Moment Selection Methods

	The Model
	GMM Information Criteria
	Parameter Estimation

	Monte Carlo Simulations
	Results

	BigDataGospodinov
	Plan
	Misspecified Models
	HJ-Distance Inference
	Model Aggregation
	Empirical Evidence: HJ-Distance
	CU-GMM Inference
	Empirical and SImulation Evidence: CU-GMM

	Misspecified and Unidentified Models
	Overview
	HJ-Distance
	CU-GMM



