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Introduction: Overview

Introduction and overview
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Introduction: Overview

Modern distributed systems: Google

“Our hardware must be controlled and administered by software that can
handle massive scale.”

Site Reliability Engineering, O’Reilly, 2016

August 16, 2018 4 / 74



Introduction: Overview

Modern distributed systems: Blockchain

Zang, Vitenberg, Jacobsen, “Deconstructing Blockchains”, 2018
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Introduction: Overview

Distributed systems as feedback control loops

Core of distributed system

Metric
estimation

Analysis

Adjustment
measures

+/-
+/-

+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections
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Observed output

Measured outputAdjustment triggers
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Handling faults

We observe (lack of) responses
We use timeouts as our metric of choice
We measure response times (or timeouts)
Our reference input consists of accepted timings
Analytics shows that response times are too high
We conclude that a primary server is not responsive
Backups are “instructed” to enter special state
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Introduction: Overview

Distributed systems as feedback control loops

Core of distributed system

Metric
estimation

Analysis

Adjustment
measures

+/-
+/-

+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections

Dynamic replication in CDNs

We observe access patterns for Web content
We use geographic distance between client and edge server as metric
We estimate location of the client
Analytics shows that client is best served by a specific edge server
We select that edge server to host the Web content
Client is directed to edge server, which subsequently loads the content
into its cache
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Introduction: Overview

Dynamic replication in a CDN

Origin
server

Client

CDN
server

CDN DNS
server

Regular
DNS system
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2. Document with refs
    to embedded documents

6. Get embedded documents
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5. Get embedded
    documents
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client-best server

DNS lookups 3

4
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Introduction: Overview

Three questions

1 What can make a distributed system so complicated?

Focus on distributed consensus

2 Are there ways to keep matters simple?

Focus on gossiping for replication

3 To what extent can we ignore details?

Focus on cognification for predictive maintenance
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Distributed consensus: Introduction to fault tolerance Basic concepts

Distributed consensus protocols
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Distributed consensus: Introduction to fault tolerance Basic concepts

Dependability

Basics
A component provides services to clients. To provide services, the component
may require the services from other components⇒ a component may depend
on some other component.

Specifically

A component C depends on C∗ if the correctness of C’s behavior depends on
the correctness of C∗’s behavior. (Components are processes or channels.)

Requirements related to dependability

Requirement Description

Reliability Continuity of service delivery
Availability Readiness for usage
Safety Very low probability of catastrophes
Maintainability How easy can a failed system be repaired
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Distributed consensus: Introduction to fault tolerance Basic concepts

Reliability versus availability

Reliability R(t) of component C

Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at time T = 0.

Traditional metrics
Mean Time To Failure (MTTF): The average time until a component fails.
Mean Time To Repair (MTTR): The average time needed to repair a
component.
Mean Time Between Failures (MTBF): Simply MTTF + MTTR.
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Distributed consensus: Introduction to fault tolerance Basic concepts

Reliability versus availability

Availability A(t) of component C

Average fraction of time that C has been up-and-running in interval [0, t).

Long-term availability A: A(∞)

Note: A = MTTF
MTBF = MTTF

MTTF+MTTR

Observation
Reliability and availability make sense only if we have an accurate notion of
what a failure actually is.
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Distributed consensus: Introduction to fault tolerance Basic concepts

Terminology

Failure, error, fault

Term Description Example

Failure A component is not living up to
its specifications

Crashed program

Error Part of a component that can
lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer
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Distributed consensus: Introduction to fault tolerance Basic concepts

Terminology

Handling faults

Term Description Example

Fault
prevention

Prevent the occurrence
of a fault

Don’t hire sloppy
programmers

Fault tolerance Build a component
such that it can mask
the occurrence of a
fault

Build each component
by two independent
programmers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing when
it comes to hiring
sloppy programmers
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Distributed consensus: Introduction to fault tolerance Basic concepts

Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

Omission failures: a component fails to take an action that it should have
taken

Commission failure: a component takes an action that it should not have
taken

Observation
Note that deliberate failures, be they omission or commission failures are
typically security problems. Distinguishing between deliberate failures and
unintentional ones is, in general, impossible.

August 16, 2018 17 / 74



Distributed consensus: Introduction to fault tolerance Basic concepts

Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

Omission failures: a component fails to take an action that it should have
taken

Commission failure: a component takes an action that it should not have
taken

Observation
Note that deliberate failures, be they omission or commission failures are
typically security problems. Distinguishing between deliberate failures and
unintentional ones is, in general, impossible.

August 16, 2018 17 / 74



Distributed consensus: Introduction to fault tolerance Failure masking by redundancy

Redundancy for failure masking

Types of redundancy

Information redundancy: Add extra bits to data units so that errors can be
recovered when bits are garbled.

Time redundancy: Design a system such that an action can be performed
again if anything went wrong. Typically used when faults are transient or
intermittent.

Physical redundancy: add equipment or processes in order to allow one
or more components to fail. This type is extensively used in distributed
systems.
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Distributed consensus: Process resilience Resilience by process groups

Process resilience

Basic idea
Protect against malfunctioning processes through process replication,
organizing multiple processes into a process group. Distinguish between flat
groups and hierarchical groups.

Flat group
Hierarchical group Coordinator

Worker

Group organization August 16, 2018 19 / 74



Distributed consensus: Process resilience Failure masking and replication

Groups and failure masking

k -fault tolerant group

When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k -fault tolerant group need to be?

With halting failures: we need a total of k +1 members as no member will
produce an incorrect result, so the result of one member is good enough.

With arbitrary failures: we need 2k +1 members so that the correct result
can be obtained through a majority vote.

Important assumptions

All members are identical
All members process commands in the same order (this assumption
complicates matters)

Result: We can now be sure that all processes do exactly the same thing.
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Distributed consensus: Process resilience Consensus in faulty systems

Consensus

Prerequisite

In a fault-tolerant process group, each nonfaulty process executes the same
commands, and in the same order, as every other nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which command to
execute next.

August 16, 2018 21 / 74



Distributed consensus: Process resilience Consensus in faulty systems

Flooding-based consensus

System model

A process group P = {P1, . . . ,Pn}
Fail-stop failure semantics, i.e., with reliable failure detection

A client contacts a Pi requesting it to execute a command

Every Pi maintains a list of proposed commands

Basic algorithm (based on rounds)

1 In round r , Pi multicasts its known set of commands Cr
i to all others

2 At the end of r , each Pi merges all received commands into a new Cr+1
i .

3 Next command cmdi selected through a globally shared, deterministic
function: cmdi ← select(Cr+1

i ).
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Distributed consensus: Process resilience Consensus in faulty systems

Flooding-based consensus: Example

P4

P3

P2

P1

decide

decide

decide

Observations

P2 received all proposed commands from all other processes⇒ makes
decision.

P3 may have detected that P1 crashed, but does not know if P2 received
anything, i.e., P3 cannot know if it has the same information as P2 ⇒
cannot make decision (same for P4).
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Distributed consensus: Process resilience Paxos

Understanding Paxos

Largely based on joint work with

Hein Meling
(Univ. Stavanger)

Written up in
H. Meling, L. Jehl: “Paxos Explained from Scratch.” In Proc. 17th Int’l Conf. Principles of Distributed Systems (OPODIS), Lecture
Notes in Computer Science, vol. 8304, pp. 1–10. Springer, 2013.
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Distributed consensus: Process resilience Paxos

Realistic consensus: Paxos

Assumptions (rather weak ones, and realistic)

A partially synchronous system (in fact, it may even be asynchronous).

Communication between processes may be unreliable: messages may be
lost, duplicated, or reordered.

Corrupted message can be detected (and thus subsequently ignored).

All operations are deterministic: once an execution is started, it is known
exactly what it will do.

Processes may exhibit halting failures, but not arbitrary failures (note:
makes Paxos not suitable for some blockchains).

Understanding Paxos

We will build up Paxos from scratch to understand where many consensus
algorithms actually come from.
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Distributed consensus: Process resilience Paxos

Paxos essentials

Starting point

We assume a client-server configuration, with initially one primary server.

To make the server more robust, we start with adding a backup server.

To ensure that all commands are executed in the same order at both
servers, the primary assigns unique sequence numbers to all commands.
In Paxos, the primary is called the leader.

Assume that actual commands can always be restored (either from clients
or servers)⇒ we consider only control messages.
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Distributed consensus: Process resilience Paxos

Two-server situation

C2

S2

S1
Leader

C1
〈o1〉

〈o2〉

〈Seq, o2, 1〉

o2

o2

〈σ2
1 〉〈σ2

2 〉

〈Seq, o1, 2〉

o1

o1

〈σ21
1 〉 〈σ21

2 〉
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Distributed consensus: Process resilience Paxos

Handling lost messages

Some Paxos terminology

The leader sends an accept message ACCEPT(o, t) to backups when
assigning a timestamp t to command o.

A backup responds by sending a learn message: LEARN(o, t)

When the leader notices that operation o has not yet been learned, it
retransmits ACCEPT(o, t) with the original timestamp.
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Distributed consensus: Process resilience Paxos

Two servers and one crash: problem

C2

S2
Leader

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

o1

〈σ1
1 〉

〈Acc, o2, 1〉 o2

〈σ2
2 〉

Problem
Primary crashes after executing an operation, but the backup never received
the accept message.
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Distributed consensus: Process resilience Paxos

Two servers and one crash: solution

C2

S2
Leader

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Lrn, o1〉

o1

o1

〈σ1
2 〉 〈σ1

1 〉

〈Acc, o2, 2〉 o2

〈σ12
2 〉

Solution
Never execute an operation before it is clear that is has been learned.
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Distributed consensus: Process resilience Paxos

Three servers and two crashes: still a problem?

C2

S3
Leader

S2

S1

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Lrn, o1〉

o1

o1

〈σ1
2 〉 〈σ1

1 〉

〈Acc, o2, 1〉 o2

〈σ2
3 〉

Scenario

What happens when LEARN(o1) as sent by S2 to S1 is lost?

Solution

S2 will also have to wait until it knows that S3 has learned o1.
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Distributed consensus: Process resilience Paxos

Paxos: fundamental rule

General rule
In Paxos, a server S cannot execute an operation o until it has received a
LEARN(o) from all other nonfaulty servers.
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Distributed consensus: Process resilience Paxos

Failure detection

Practice
Reliable failure detection is practically impossible. A solution is to set timeouts,
but take into account that a detected failure may be false.

C2

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Alive, o1〉

o1

〈σ1
1 〉

〈Acc, o2, 1〉 o2

〈σ2
2 〉
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Distributed consensus: Process resilience Paxos

Required number of servers

Observation
Paxos needs at least three servers

Adapted fundamental rule

In Paxos with three servers, a server S cannot execute an operation o until it
has received at least one (other) LEARN(o) message, so that it knows that a
majority of servers will execute o.
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Distributed consensus: Process resilience Paxos

Required number of servers

Assumptions before taking the next steps

Initially, S1 is the leader.
A server can reliably detect it has missed a message, and recover from
that miss.
When a new leader needs to be elected, the remaining servers follow a
strictly deterministic algorithm, such as S1 → S2 → S3 .
A client cannot be asked to help the servers to resolve a situation.

Observation
If either one of the backups (S2 or S3) crashes, Paxos will behave correctly:
operations at nonfaulty servers are executed in the same order.
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Distributed consensus: Process resilience Paxos

Leader crashes after executing o1

S3 is completely ignorant of any activity by S1

S2 received ACCEPT(o,1), detects crash, and becomes leader.

S3 even never received ACCEPT(o,1).

S2 sends ACCEPT(o2 ,2)⇒ S3 sees unexpected timestamp and tells S2
that it missed o1.

S2 retransmits ACCEPT(o1,1), allowing S3 to catch up.

S2 missed ACCEPT(o1,1)

S2 did detect crash and became new leader

S2 sends ACCEPT(o1,1)⇒ S3 retransmits LEARN(o1).

S2 sends ACCEPT(o2 ,1)⇒ S3 tells S2 that it apparently missed
ACCEPT(o1,1) from S1, so that S2 can catch up.
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Distributed consensus: Process resilience Paxos

Leader crashes after sending ACCEPT(o1,1)

S3 is completely ignorant of any activity by S1

As soon as S2 announces that o2 is to be accepted, S3 will notice that it
missed an operation and can ask S2 to help recover.

S2 had missed ACCEPT(o1,1)

As soon as S2 proposes an operation, it will be using a stale timestamp,
allowing S3 to tell S2 that it missed operation o1.

Observation
Paxos (with three servers) behaves correctly when a single server crashes,
regardless when that crash took place.
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Distributed consensus: Process resilience Paxos

Leader crashes after sending ACCEPT(o1,1)

S3 is completely ignorant of any activity by S1

As soon as S2 announces that o2 is to be accepted, S3 will notice that it
missed an operation and can ask S2 to help recover.

S2 had missed ACCEPT(o1,1)

As soon as S2 proposes an operation, it will be using a stale timestamp,
allowing S3 to tell S2 that it missed operation o1.

Observation
Paxos (with three servers) behaves correctly when a single server crashes,
regardless when that crash took place.

Understanding Paxos August 16, 2018 37 / 74



Distributed consensus: Process resilience Paxos

False crash detections

C2

S3

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, o1, 1〉

〈Acc, o2, 1〉

〈Lrn, o2〉

drop leadership

o2

〈σ2
3 〉

confusion

Problem and solution

S3 receives ACCEPT(o1,1), but much later than ACCEPT(o2 ,1). If it knew who
the current leader was, it could safely reject the delayed accept message⇒
leaders should include their ID in messages.
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Distributed consensus: Process resilience Paxos

But what about progress?

C2

S3

S2
Leader

S1
Leader

C1
〈o1〉

〈o2〉

〈Acc, S1, o1, 1〉

〈Lrn, o1〉 o1

〈σ1
3 〉

〈Acc, S2, o2, 1〉

〈Lrn, o2〉 o2

〈σ12
3 〉

Essence of solution
When S2 takes over, it needs to make sure than any outstanding operations
initiated by S1 have been properly flushed, i.e., executed by enough servers.
This requires an explicit leadership takeover by which other servers are
informed before sending out new accept messages.
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Replication for scalability: Consistency Basic concepts

Replication for scalability
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Replication for scalability: Consistency Basic concepts

Performance and scalability

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting
operations are done in the the same order everywhere

Conflicting operations: From the world of transactions

Read–write conflict: a read operation and a write operation act
concurrently
Write–write conflict: two concurrent write operations

Issue
Guaranteeing global ordering on conflicting operations may be a costly
operation, downgrading scalability Solution: weaken consistency requirements
so that hopefully global synchronization can be avoided
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Replication for scalability: Data-centric consistency models

Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the data
store specifies precisely what the results of read and write operations are in
the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Distributed data store

Process Process Process

Local copy
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Replication for scalability: Data-centric consistency models Consistent ordering of operations

Sequential consistency

Definition
The result of any execution is the same as if the operations of all processes
were executed in some sequential order, and the operations of each individual
process appear in this sequence in the order specified by its program.

(a) A sequentially consistent data store. (b) A data store that is not sequentially
consistent

P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(a) (b)
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Replication for scalability: Data-centric consistency models Consistent ordering of operations

Grouping operations

Definition

Accesses to locks are sequentially consistent.

No access to a lock is allowed to be performed until all previous writes
have completed everywhere.

No data access is allowed to be performed until all previous accesses to
locks have been performed.

Basic idea
You don’t care that reads and writes of a series of operations are immediately
known to other processes. You just want the effect of the series itself to be
known.

Grouping operations August 16, 2018 44 / 74



Replication for scalability: Data-centric consistency models Consistent ordering of operations

Grouping operations

Definition

Accesses to locks are sequentially consistent.

No access to a lock is allowed to be performed until all previous writes
have completed everywhere.

No data access is allowed to be performed until all previous accesses to
locks have been performed.

Basic idea
You don’t care that reads and writes of a series of operations are immediately
known to other processes. You just want the effect of the series itself to be
known.

Grouping operations August 16, 2018 44 / 74



Replication for scalability: Data-centric consistency models Consistent ordering of operations

Grouping operations

A valid event sequence for coarse-grained consistency
L(x) W(x)a  L(y) W(y)b  U(x)  U(y)

L(x)  R(x)a         R(y) NIL

L(y)  R(y)b

P1:

P2:

P3:

Observation
Coarse-grained consistency implies that we need to lock and unlock data
(implicitly or not).
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Replication for scalability: Data-centric consistency models Consistent ordering of operations

Consistency, availability, and partitioning

CAP theorem
Any networked system providing shared data can provide only two of the
following three properties:

C: consistency, by which a shared and replicated data item appears as a
single, up-to-date copy

A: availability, by which updates will always be eventually executed

P: Tolerant to the partitioning of a process group.

Conclusion
In a network subject to communication failures, it is impossible to realize an
atomic read/write distributed shared memory that guarantees a response to
every request.
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Replication for scalability: Data-centric consistency models Consistent ordering of operations

CAP in practice

Understanding CAP

Consider two processes that can no longer communicate:

Letting one process accept updates leads to inconsistency: {A,P}.
If consistency needs to be maintained, one process will have to fake to be
unavailable: {C,P}.
If we do insist on communication, then we cannot tolerate partitions:
{C,A}.

Practice
Tolerate partitions and let processes simply go ahead accepting potential
inconsistencies. Design the system to mitigate the effects of inconsistencies
(which can often be done by considering applications).
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Replication for scalability: Data-centric consistency models Consistent ordering of operations

Eventual consistency

Observation
In practice, we often see that data is read by many and updated by few,
essentially enabling reducing the complexity caused by write-write conflicts:
only few processes need to ensure that their updates take place in the same
order.

Basic idea
Let updates gradually propagate to (read only) replicas. If a client always
accesses the same replica, it may not even notice that what it reads is not yet
up-to-date. It may also not matter.

Observation
We need to come up with efficient and effective means for spreading updates
across replicas, no matter where they are located in a wide-area distributed
system.
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Replication for scalability: Multicast communication Flooding-based multicasting

Flooding

Essence
P simply sends a message m to
each of its neighbors. Each
neighbor will forward that message,
except to P, and only if it had not
seen m before.

Performance
The more edges, the more
expensive!

The size of a random overlay as
function of the number of nodes
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Variation
Let Q forward a message with a certain probability pflood , possibly even
dependent on its own number of neighbors (i.e., node degree) or the degree of
its neighbors.
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Replication for scalability: Multicast communication Gossip-based data dissemination

Epidemic protocols

Assume there are no write–write conflicts
Update operations are performed at a single server
A replica passes updated state to only a few neighbors
Update propagation is lazy, i.e., not immediate
Eventually, each update should reach every replica

Two forms of epidemics

Anti-entropy: Each replica regularly chooses another replica at random,
and exchanges state differences, leading to identical states at both
afterwards
Rumor spreading: A replica which has just been updated (i.e., has been
contaminated), tells a number of other replicas about its update
(contaminating them as well).
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Replication for scalability: Multicast communication Gossip-based data dissemination

Anti-entropy

Principal operations

A node P selects another node Q from the system at random.
Pull: P only pulls in new updates from Q
Push: P only pushes its own updates to Q
Push-pull: P and Q send updates to each other

Observation

For push-pull it takes O(log(N)) rounds to disseminate updates to all N nodes
(round = when every node has taken the initiative to start an exchange).
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Replication for scalability: Multicast communication Gossip-based data dissemination

Anti-entropy: analysis

Basics
Consider a single source, propagating its update. Let pi be the probability that
a node has not received the update after the i th round.

Analysis: staying ignorant

With pull, pi+1 = (pi)
2: the node was

not updated during the i th round and
should contact another ignorant node
during the next round.
With push,
pi+1 = pi(1− 1

N−1 )
N(1−pi ) ≈ pie−1 (for

small pi and large N): the node was
ignorant during the i th round and no
updated node chooses to contact it
during the next round.
With push-pull: (pi)

2 · (pie−1)

push

pull

push-pull
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Replication for scalability: Multicast communication Application: topology management

Gossip-based topology management

Largely based on joint work with

Mark Jelasity Spyros Voulgaris
(Univ. Szeged) (Univ. Athens)

Further reading by
M. Jelasity, A. Montresor, O. Babaoglu: “Gossip-based aggregation in large dynamic networks.” ACM TOCS, vol. 23(3) 2005.
M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, M. van Steen: “Gossip-based peer sampling” ACM TOCS, vol. 25(3)
2007.
S. Voulgaris, M. van Steen: “VICINITY: A Pinch of Randomness Brings out the Structure” Proc. Middleware, Lecture Notes in
Computer Science, vol. 8275, pp. 21–40, Springer, 2013.
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Replication for scalability: Multicast communication Application: topology management

Constructing a grid
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Replication for scalability: Multicast communication Application: topology management

Basic approach

Essence
Consider a set of networked nodes. Our goal is to construct an overlay
network in a fully decentralized fashion.
Every node maintains a partial view of the network: a few links to
neighboring nodes.
Each node periodically updates its view, by exchanging links with
randomly selected neighbors.
View updates changes a node’s set of neighbors, but gradually drags the
entire network to the required overlay structure.

Observation
It’s already very difficult to understand this emerging behavior.
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Replication for scalability: Multicast communication Application: topology management

Vicinity with a peer-sampling service

Two-layered partial view

Random layer: randomly select a node from list, and then exchange k
randomly selected links.
Deterministic layer: exchange best links for realizing objective (such as a
specific topology).
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Replication for scalability: Multicast communication Application: topology management

Example: Clustering nodes
Basics: Every node i is assigned a group identifier GID(i) ∈ N. Our goal is to
partition the overlay into disjoint components (clusters) such that

dist(i , j) =

{
1 if i and j are in the same group [GID(i) = GID(j)]
0 otherwise

August 16, 2018 57 / 74



Replication for scalability: Multicast communication Application: topology management

Example: Clustering nodes

Determinism versus Randomness
Deterministic selection alone is a disaster

...but a pinch of randomness helps a lot

Randomness is the determinant factor

The combination gives the best results
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Replication for scalability: Multicast communication Application: topology management

Example: 2D torus
Basics: Every node i has a position (xi ,yi). Our goal is to link nodes to their
closest neighbors in the Euclidean space.

dx = min{|xi −xj |,width−|xi −xj |}
dy = min{|yi −yj |,height−|yi −yj |}
dist(i , j) =

√
dx2 +dy2
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Systems management: Cognification Basic concepts

Cognification in the feedback control loop

Largely based on work by

Ozalp Babaoglu Alina Sirbu
(Univ. Bologna) (Univ. Pisa)

Further reading:
A. Sibru, O. Babaoglu, A. Sirbu: “Towards operator-less data centers through data-driven, predictive, proactive autonomics,”
Cluster computing, vol. 19, pp. 865-878, 2016.
O. Babaoglu, A. Sirbu: “Cognified distributed computing,” Proc. 37th Int’l Conf. on Distributed Computing Systems (ICDCS), 2018.

August 16, 2018 61 / 74



Systems management: Cognification Basic concepts

Distributed systems as feedback control loops

Core of distributed system

Metric
estimation

Analysis

Adjustment
measures

+/-
+/-

+/-

Reference input

Initial configuration

Uncontrollable parameters (disturbance / noise)

Observed output

Measured outputAdjustment triggers

Corrections
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Systems management: Cognification Predictive maintenance

Predicting failing nodes in a data center

A simple fact

For many data centers, a human operator has on average tens of thousands of
machines to monitor and to take action when things go wrong. Such numbers
preclude massive scaling.

Observation
To properly maintain data centers at (future) warehouse scales, we need to
make more room for autonomic computing in which operators can easily watch
over 10- to 100-fold more machinery than is currently possible.

Starting point

Make sure that you can predict where things will go wrong before they do, so
that measures can be automatically taken to sustain reliability (e.g., migrating
virtual machines).
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Systems management: Cognification Predictive maintenance

Data-driven predictive maintenance

Case study: source

A workload trace describing the status of nodes, jobs, and tasks of over 12,000
Google machines during a period of approximately 29 days. Events are
recorded at 5-minute intervals, in total adding up to some 200 GB of data.
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What to measure?

Task-based features
Number of tasks running during the entire last 5 minutes
Number of tasks started in the last 5 minutes
Number of tasks that have finished in the last 5 minutes:

with status finished normally
with status evicted
with status failed
with status killed
with status lost (i.e., presumably terminated, but no record of the fact)

Node-based features
Mean CPU usage rate
Canonical memory usage (i.e., number of user-accessible pages)
Mean disk I/O time
Cycles per instruction (CPI)
Memory accesses per instruction (MAI)
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Systems management: Cognification Predictive maintenance

What to measure?

Expanding the feature set: aggregation

For each basic feature, consider the six last time windows
To observe deviation from the means, measure mean, deviation, and
coefficient of variation (σ/µ) over resolutions: 1, 12, 24, 48, 72, 96 hours.

Cross-correlation features
Look at the correlation between # running, started, failed jobs; CPU load;
memory usage; disk I/O; CPI.
Consider all possible

(7
2

)
= 21 combinations for each of the 6 resolutions.

Measuring cluster behavior

Per node: uptime
Number of nodes that failed in the past hour
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Total feature set

Total number of features to look at
7 plus 5 basic features, measured for 6 time windows
Uptime per node
Number of failed nodes in past hour
6 different resolutions for each basic feature
3 statistics per resolution
21 correlations

End result
Adds up to (6×12 = 72 plus 2 features) plus (3×6×12 = 216 plus
21×6 = 126) aggregation features, in total 416 features.

Total size of the data set: over 100 million data points.
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Systems management: Cognification Predictive maintenance

The data science

Essence
We’re dealing with a classification problem that requires predicting whether a
node will fail, based on what we know so far. What is needed is a training data
set that can be used to build a classifier.

Data set
The data set consists of relatively few failure detections in comparison to
nonfailing nodes, creating an imbalance. Therefore, consider a random sample
of 0.5% data points representing nonfailing nodes and bringing the two types in
balance in the final data set.

⇒ a data set with over 650,000 data points.
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Systems management: Cognification Predictive maintenance

The data science

Method
Many data points correspond to the same event (i.e., represent the same
failure), so random sampling to construct a training set and a subsequent test
set may show too many overlaps leading to nonrealistic optimal results.

⇒ split data according to time.
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The data science

Model building

Model testing
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Systems management: Cognification Predictive maintenance

Displaying results

Understanding receiver operating
characteristic (ROC)

Any binary classifier will lead to
true positives and false positives
when used for predictions.
Assume that the classifier is
dependent on a parameter s∗.
The true positve rate (TPR) is now
a function of s∗

The false positve rate (FPR) is
now a function of s∗

By varying s∗, we can obtain a
scatterplot of (TPR,FPR) values

Understanding precision

The true positive rate (TPR) is also known as the recall. The precision is the
fraction of true positives over all output (= true and false positives).
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Systems management: Cognification Predictive maintenance

The results

The dependent parameter s∗

For each node j , a score sj was computed that was proportional to the liklihood
that j would belong to the class of failing nodes. Then, a threshold s∗ was used,
such that if sj ≥ s∗, node j would be predicted to fail.

August 16, 2018 72 / 74



Systems management: Cognification Predictive maintenance

The results

The dependent parameter s∗

For each node j , a score sj was computed that was proportional to the liklihood
that j would belong to the class of failing nodes. Then, a threshold s∗ was used,
such that if sj ≥ s∗, node j would be predicted to fail.

August 16, 2018 72 / 74



Systems management: Cognification Predictive maintenance

Cognification: conclusions

Important results

Using appropriate datasets (i.e., including proper sampling), high-quality
predictions on failing nodes can be obtained.
Based on the given dataset and experiment, data-driven predictive
maintenance is a highly promising approach.
A similar approach has been shown to work for predicting energy
consumption.

Conclusion
Data-driven analytics without seeing all the gory details will allow us to partly
move from classical fault tolerance to fault prevention by simply replacing
components before they break.
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Conclusions:

Take-away messages

Lessons
There are matters that are simply complicated, such as reaching
consensus in distributed systems.
There are many matters that can be kept simple, such as multicasting by
flooding & gossiping.
Distributed systems are entering a new era by taking data analysis into
account. Cognification will allow us to draw conclusions without knowing
all the gory details.

Crucial observations that are too often ignored

It is relatively simple to invent complicated solutions, yet it may be very
difficult to invent simple ones.

Discard thoughts on optimizations until you fully understand the problem
at hand.
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