
Software Synthesis

for Networks
Hossein Hojjat

Rochester Institute of Technology

Khatam University

Pasargad Summer School on Networks and

Systems

August 14, 2018

2

University of Tehran TU Eindhoven

EPFL

Cornell

Rochester Institute of Technology

Formal Methods &

Programming

Languages

3

It is a perfect time for the formal methods and

programming languages communities

to get more involved in networking research

Jedidiah McClurgh

Nate Foster

Pavol Cerny

Philipp Rümmer

Conventional Networking

5

There are
hosts...

Conventional Networking

6

Connected by
switches...

Conventional Networking

7

There are also
servers...

Conventional Networking

8

Connected by
routers...

Conventional Networking

9

And a load
balancer...

Conventional Networking

10

And a gateway
router...

Conventional Networking

11

There are other
ISPs...

Conventional Networking

12

So we need to run
BGP...

Conventional Networking

13

And we need a firewall to filter incoming
traffic...

Conventional Networking

14

There are also wireless
hosts...

Conventional Networking

15

So we need wireless
gateways...

Conventional Networking

16

And yet more middleboxes for lawful
intercept...

Conventional Networking

17

Each color represents a different set of
control plane protocols and algorithms...

Conventional Networking

18

Reasoning about network behavior is extremely

difficult

Does correctness matter? The Internet is best effort…

…the end-to-end principle says that hosts are
best equipped to deal with failures!

A network change was […] executed

incorrectly […] more “stuck”volumes and added
more requests to the re-mirroring storm

Twitter’s outage was related to an internal code change.
We reverted the change, which fixed the issue

Example: Outages

19

We discovered a misconfiguration on
this pair of switches that caused what's
called a “bridge loop” in thenetwork

Experienced a network connectivity issue
[…]
interrupted the airline's flight departures,

airport processing and reservations

systems

Even technically sophisticated companies are
struggling to build networks that provide reliable
service to users

هبداشتوجودمودمافزارنرمدرکهباگیدلیلبه[...]روترهاازکیی

کردادهاستفنفوذبرایپذیریآسیباینازفردیکونشدروزرسانی

Software-Defined Networking

20

A clean-slate architecture based on two key ideas:

• Generalize network devices

• Separate control and forwarding

Software-Defined Networking

21

A clean-slate architecture based on two key ideas:

• Generalize network devices

• Separate control and forwarding

Programmable Data Planes

Global Visibility and

Control

Open APIs

Your Program goes here!

22

Enabling use of

reasoning techniques

typically associated

with the programming

languages and

verification

communities

Software-Defined Networking

But how do we write

all of this software?

23

Software Synthesis

What if programmers could...

•Sketch the structure of their program...

•Give examples and scenarios...

•Specify functional behavior...

•Write down high-level requirements...

•Express resource constraints...

...and a tool automatically synthesized a correct

and efficient implementation?

24

Software Synthesis

Specification

Synthesizer

Program

25

Specification

Software Synthesis

Input-Output

Examples

Synthesizer

Program

Partial

Program

Logical

Formula

Programmers can express

their insights in a wide variety

of ways, not just in standard

code!

26

• Does software synthesis really

work?

• Answer: yes - for certain domains

27

•Programs are large, but simple and

highly structured—e.g., loop free!

•The desired behavior of the network is

often clear (at least at an intuitive level)

•Most difficult aspects of network

programming stem from limited

resources and inherent concurrency

Synthesis for Networks

28

This Tutorial

Outline:

•Network Update Synthesis

•Synchronization for Network Programs

•Optimizing Horn Solvers for Network Repair

Synthesis is an effective means for

automating some of the trickiest

aspects of network programming

29

Efficient Synthesis

of Network Updates

[SIGCOMM '12, PLDI '15]
30

Network-wide

Configuration

Controller Run-Time

…

Application

Host

change
Topology

change

Traffic

statistics

Network-wide

ConfigurationNetwork-wide

ConfigurationNetwork-wide

Configuration

Controller Platform

Dynamic SDN Applications

31

Network Updates

Initial State

Target State

How can we transition

between global states?

Problem: naive updates

can break important

invariants! 32

Example: Data Center

33

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Network Configuration

34

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Network Update

35

T1 T2 T4

A1 A2

C1 C2

T3

A3 A4

• Update program:

upd T1; upd C2; upd A3; upd A1

H1 H2 H3 H4

Naïve Update

36

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Possible problem: black holes

Naïve Update

37

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Possible problem: access control violation

Example:

Firewall on A1

and A4.

At 12:47 AM PDT on April 21st, a network change was performed

as part of our normal scaling activities...

During the change, one of the steps is to shift traffic off of one of

the redundant routers...

The traffic shift was executed incorrectly and the traffic was

routed onto the lower capacity redundant network.

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of connection

attempts was extremely high and nodes began to fail, resulting in

more volumes left needing to re-mirror. This added more

requests to the re-mirroring storm...

The trigger for this event was a network configuration change.

Is This Really a Problem?

38

Outages Cost a Lot

39

https://www.buzzfeednews.com/article/mattlynley/the-high-cost-of-an-amazon-outage

• Aug 13, 2013, Amazon was down for roughly 40 minutes

• It lost $1,104 in net sales per second, on average

Per-Packet Consistency
Consistency Guarantee: every

packet (or flow) in the network

“sees” a single policy version

Two-Phase Update:

•Tag configurations with

versions

•Stamp incoming packets

• Install new configuration in core

• Install new configuration at

edge

•Wait for in-flight packets to exit

•Delete old configurations

40

å

Limitations:

•Doubles peak memory usage

•Updates are slow to implement

Per-Packet Consistent Updates

Questions:

• Can we implement a per-packet consistent

update by simply updating switches in the right

order?

• If not, can we relax the requirements in a

reasonable way to obtain an efficient

Theorem (Universal

Property Preservation): a

network update is per-packet

consistent if and only if it

preserves all safety

properties.

41

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Update: upd T1; upd C2; upd A3; upd A1
✔

Example: Data Center

42

Naive Update

• Update: upd A2; upd A4; upd T1; upd C1 ✗
• Update: upd A2; upd A4; upd C1; upd T1 ✗
• There is no update that ensures per-packet

consistency

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

43

Relaxing Per-Packet Consistency

Idea: all packets eventually delivered via A1 or A4

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

• Update: upd A2; upd A4; upd T1; upd C1 ✗
• Update: upd A2; upd A4; upd C1; upd T1
✔

44

How to Specify Properties?

Reachability: every packet that starts at si reaches di

Waypointing: all packets traverse w before exiting

Chaining: all packets traverse w1 and w2 before

exiting

LTL: (si →F di)

LTL: (¬g U w) ∧ F g

LTL: (¬g U w2)∧ (¬w2 U w1)∧ F g
45

LTL

Specification

Network Update Synthesis

Update

Synthesizer

Update

Program

Initial and

Final

Configuration

s

Update at

most once

46

Synthesis Algorithm

φ
LTL

Specification

Old and New

Configurations

45

Synthesis Algorithm

Depth-First Search:

• Attempt to update the

switches one-by-one

• Backtrack whenever a

bad configuration is

reached
Challenges:

• Search space is huge

• Checking a configuration

means solving an LTL

model checking problem

(PSPACE-complete)!

Two main ideas:

•Learn from counter-examples to

aggressively prune the search space

•Use an incremental model checker

48

❑ all packets reach H3

❑ all packets traverse firewall

Model M:

Specification S:

Question: Does M satisfy S?

Model Checking

H1 H3

❑ R holds at a switch s if all packets that traverse s reach H3

❑ FW holds at a switch s if all packets that traverse s then

traverse firewall

R∧ ¬FW

R∧ ¬FW

R∧ ¬FW R∧ FW

R∧ ¬FW

R∧ ¬FWR∧ FW

R∧FW

R∧FW

Model Checking

H1 H3
R∧ ¬FW

R∧ ¬FW

R∧ ¬FW R∧ FW

R∧ ¬FW

R∧ ¬FW

R∧ FW

R∧FW

R∧FWR∧ ¬FW

Incremental model checking

❑ R holds at a switch s if all packets that traverse s reach H3

❑ FW holds at a switch s if all packets that traverse s then

traverse firewall

R∧ ¬FW

One sentence summary:

The idea is the same as in LTL-to-Büchi construction,

but on loop-free structures it is possible to check all

constraints locally (no need for the Büchi condition)

Model checking loop-free

structures

Main Limitation

For some topologies, configurations, and

specifications, there is no correct ordering we can use

Example: "double diamond" [DISC '16]

Our implementation reverts to a two-phase update...
53

Waits

54

Internet

S3

S2

S1

LAN
1

Update2

Update1

LAN
2

LAN
3

Not Safe for SSH traffic

SSH

≠ SSH

Waits

55

• Correspondence to weak memory systems

• Equivalence of two problems:
1) Finding a correct and efficient placement of fences for a

concurrent program under weak memory model

2) Finding minimum number of waits for an update

sequence

Evaluation
Questions:

• Impact of optimizations:

‣ Pruning search space

‣ Incremental model checking

• Scalability of approach:

‣ Topology

‣ Complexity of specifications

‣ Total space explored

Methodology:

• Real-world topologies (TopoZoo, FatTrees, Small

World)

• Synthetic configurations (e.g., shortest-path

forwarding)

Fattree

Small-world

56

Impact of Optimizations

• Configurations: shortest-path

forwarding

• LTL Specification: all-pairs reachability

T
o

p
o

Z
o

o
F
a
tT

re
e

se
co
n
d
s

se
co
n
d
s

57

0 200 400 600 (switches)

0

50

100
(a)

R
u
n
ti

m
e

(s
)

Topology Zoo

NuSMV
Batch
Incremental

0 200 400 600 (switches)

0

50

100
FatTree

0 200 400 600 (switches)

0

50

100
Small-World

0 5k 10k (rules)

0

20

40

60

R
u
n
ti

m
e

(s
)

NetPlumber
Incremental

0 5k 10k (rules)

0

20

40

60

0 5k 10k (rules)

0

20

40

60

Figure 7: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology Zoo, FatTree, Small-World
topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

Figure 8: (g) Scalability of Incremental on Small-World topologies of in-
creasing size; (h) Scalability when no correct switch-granularity updateex-
ists (i.e. algorithm reports “ impossible”), and (i) Scalability of fine-grained
(rule-granularity) approach for solving switch-impossible examples in (h).

report counterexamples, putting it at a disadvantage in this end-
to-end comparison, so we also measured total Incremental versus
NetPlumber runtime on the same set of model-checking questions
posed by Incremental for theSmall-World example. Our tool isstill
faster on all instances, with amean speedup of 2.74x.

Scalability. To quantify our tool’s scalability, we constructed
Small World topologies with up to 1500 switches, and ran experi-
ments with large diamond updates—the largest has 1015 switches
updating. The results appear in Figure 8(g). Themaximum synthe-
sis times for the three properties were 129.04s, 30.11s, and 0.85s,
which shows that our tool scales to problems of realistic size.

Infeasible Updates. We also considered examples for which
there is no switch-granular update. Figure 8(h) shows the results
of experimentswherewegenerated asecond diamond atop thefirst
one, requiring it to route traffic in the opposite direction. Using
switch-granularity, the inputs are reported as unsolvable in maxi-
mumtime153.48s, 33.48s, and 0.69s. Using rule-granularity, these
inputs are solved successfully for up to 1000 switches with maxi-
mum times of 776.13s, 512.84s, and 82.00s (see Figure 8(i)).

Waits. We also separately measured the time needed to run the
wait-removal heuristic for the Figure 8 experiments. For (g), the
maximum wait-removal runtime was 0.89s, resulting in 2 needed
waitsfor each instance. For (i), themaximum wait-removal runtime
was 103.87s, resulting in about 2.6 waits on average (with amaxi-
mum of 4). For the largest problems in (g) and (i), thiscorresponds
to removal of 1397/ 1399 and 55823/ 55826 waits (about 99.9%).

7. Related Work

This paper extends preliminary work reported in a workshop pa-
per [30]. We present a more precise and realistic network model,
and replaceexpensivecalls to an external model checker with calls
to a new built-in incremental network model checker. We extend
the DFS search procedure with optimizations and heuristics that
improveperformancedramatically. Finally, weevaluateour tool on
acomprehensiveset of benchmarks with real-world topologies.

Synthesisof concurrent programs. Thereismuch previouswork
on synthesis for concurrent programs [12, 35, 38]. In particular,
work by Solar-Lezamaet al. [35] and Vechev et al. [38] synthesizes
sequences of instructions. However, traditional synthesis and syn-
thesis for networking arequitedifferent. First, traditional synthesis
is a game against the environment which (in the concurrent pro-
gramming case) provides inputsand schedules threads; in contrast,
our synthesis problem involves reachability on thespaceof config-
urations. Second, our spaceof configurations is very rich, meaning
that checking configurations is itself amodel checking problem.

Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g. avoid-
ing packet/bandwidth lossduring planned maintenanceto BGP[10,
32]. Other work avoids routing loops and blackholes during IGP
migration [36]. Work on network updates in SDN proposed the
notion of consistent updates and several implementation mech-
anisms, including two-phase updates [33]. Other work explores
propagating updates incrementally, reducing thespaceoverhead on
switches [17]. Asmentioned in Section 2, recent work proposesor-
dering updates for specific properties [15], whereas we can handle
combinationsand variantsof theseproperties. Furthermore, SWAN
and zUpdate add support for bandwidth guarantees [13, 23]. Zhou
et al. [40] consider customizabletraceproperties, and proposeady-
namic algorithm to find order updates. This solution can take into
account unpredictable delays caused by switch updates. However,
it may not alwaysfind asolution, even if oneexists. In contrast, we
obtain a completeness guarantee for our static algorithm. Ludwig
et al. [24] consider ordering updates for waypointing properties.

Model checking. Model checking hasbeen used for network ver-
ification [2, 18, 20, 26, 27]. The closest to our work is the incre-
mental checker NetPlumber [19]. Surface-level differences include
thespecification languages (LTL vs. regular expressions), and Net-
Plumber’s lack of counterexample output. The main difference is
incrementality: Netplumber restricts checking to “probe nodes,”
keeping track of “header-space” reachability information for those
nodes, and then performing property queries based on this. In con-
trast, we look at the property, keeping track of portions of the
property holding at each node, which keeps incremental recheck-

315

0 200 400 600 (switches)

0

50

100

R
u
n
ti

m
e

(s
)

Topology Zoo

NuSMV
Batch
Incremental

0 200 400 600 (switches)

0

50

100
(b)

FatTree

0 200 400 600 (switches)

0

50

100
Small-World

0 5k 10k (rules)

0

20

40

60

R
u
n
ti

m
e

(s
)

NetPlumber
Incremental

0 5k 10k (rules)

0

20

40

60

0 5k 10k (rules)

0

20

40

60

Figure 7: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology Zoo, FatTree, Small-World
topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

Figure 8: (g) Scalability of Incremental on Small-World topologies of in-
creasing size; (h) Scalability when no correct switch-granularity updateex-
ists (i.e. algorithm reports “ impossible”), and (i) Scalability of fine-grained
(rule-granularity) approach for solving switch-impossible examples in (h).

report counterexamples, putting it at a disadvantage in this end-
to-end comparison, so we also measured total Incremental versus
NetPlumber runtime on the same set of model-checking questions
posed by Incremental for theSmall-World example. Our tool isstill
faster on all instances, with a mean speedup of 2.74x.

Scalability. To quantify our tool’s scalability, we constructed
Small World topologies with up to 1500 switches, and ran experi-
ments with large diamond updates—the largest has 1015 switches
updating. The results appear in Figure 8(g). The maximum synthe-
sis times for the three properties were 129.04s, 30.11s, and 0.85s,
which shows that our tool scales to problems of realistic size.

Infeasible Updates. We also considered examples for which
there is no switch-granular update. Figure 8(h) shows the results
of experimentswherewegenerated asecond diamond atop thefirst
one, requiring it to route traffic in the opposite direction. Using
switch-granularity, the inputs are reported as unsolvable in maxi-
mum time153.48s, 33.48s, and 0.69s. Using rule-granularity, these
inputs are solved successfully for up to 1000 switches with maxi-
mum times of 776.13s, 512.84s, and 82.00s (see Figure 8(i)).

Waits. We also separately measured the time needed to run the
wait-removal heuristic for the Figure 8 experiments. For (g), the
maximum wait-removal runtime was 0.89s, resulting in 2 needed
waitsfor each instance. For (i), themaximum wait-removal runtime
was 103.87s, resulting in about 2.6 waits on average (with a maxi-
mum of 4). For the largest problems in (g) and (i), thiscorresponds
to removal of 1397/ 1399 and 55823/ 55826 waits (about 99.9%).

7. Related Work

This paper extends preliminary work reported in a workshop pa-
per [30]. We present a more precise and realistic network model,
and replace expensivecalls to an external model checker with calls
to a new built-in incremental network model checker. We extend
the DFS search procedure with optimizations and heuristics that
improveperformancedramatically. Finally, weevaluateour tool on
a comprehensive set of benchmarks with real-world topologies.

Synthesisof concurrent programs. Thereismuch previouswork
on synthesis for concurrent programs [12, 35, 38]. In particular,
work by Solar-Lezamaet al. [35] and Vechev et al. [38] synthesizes
sequences of instructions. However, traditional synthesis and syn-
thesis for networking arequitedifferent. First, traditional synthesis
is a game against the environment which (in the concurrent pro-
gramming case) provides inputs and schedules threads; in contrast,
our synthesis problem involves reachability on thespace of config-
urations. Second, our space of configurations is very rich, meaning
that checking configurations is itself a model checking problem.

Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g. avoid-
ing packet/bandwidth lossduring planned maintenanceto BGP[10,
32]. Other work avoids routing loops and blackholes during IGP
migration [36]. Work on network updates in SDN proposed the
notion of consistent updates and several implementation mech-
anisms, including two-phase updates [33]. Other work explores
propagating updates incrementally, reducing thespaceoverhead on
switches [17]. Asmentioned in Section 2, recent work proposesor-
dering updates for specific properties [15], whereas we can handle
combinationsand variantsof theseproperties. Furthermore, SWAN
and zUpdate add support for bandwidth guarantees [13, 23]. Zhou
et al. [40] consider customizable traceproperties, and proposeady-
namic algorithm to find order updates. This solution can take into
account unpredictable delays caused by switch updates. However,
it may not alwaysfind asolution, even if oneexists. In contrast, we
obtain a completeness guarantee for our static algorithm. Ludwig
et al. [24] consider ordering updates for waypointing properties.

Model checking. Model checking hasbeen used for network ver-
ification [2, 18, 20, 26, 27]. The closest to our work is the incre-
mental checker NetPlumber [19]. Surface-level differences include
thespecification languages (LTL vs. regular expressions), and Net-
Plumber’s lack of counterexample output. The main difference is
incrementality: Netplumber restricts checking to “probe nodes,”
keeping track of “header-space” reachability information for those
nodes, and then performing property queries based on this. In con-
trast, we look at the property, keeping track of portions of the
property holding at each node, which keeps incremental recheck-

315

Scalability

• Configurations: "diamond" / "double diamond"

• Specifications: reachability, waypointing,

chaining

F
e
a
si

b
le

In
fe

a
si

b
le

se
co
n
d
s

se
co
n
d
s

58

Synchronization for

Network Programs

[PLDI’16,CAV ‘17]59

60

Stateful Firewall

H1 H2

•H1 should be allowed to communicate with H2

•H2 should only be allowed to communicate with H1 if

H1 has previously initiated a connection

61

Stateful Firewall

•H1 should be allowed to communicate with H2

•H2 should only be allowed to communicate with H1 if

H1 has previously initiated a connection

H1 H2

62

Stateful Firewall

•H1 should be allowed to communicate with H2

•H2 should only be allowed to communicate with H1 if

H1 has previously initiated a connection

H1 H2

63

Stateful Firewall

•H1 should be allowed to communicate with H2

•H2 should only be allowed to communicate with H1 if

H1 has previously initiated a connection

H1 H2

64

Stateful Firewall

•H1 should be allowed to communicate with H2

•H2 should only be allowed to communicate with H1 if

H1 has previously initiated a connection

H1 H2

65

Stateful Firewall

H1 H2

•H1 should be allowed to communicate with H2

•H2 should only be allowed to communicate with H1 if

H1 has previously initiated a connection

66

Stateful Firewall

• An event can trigger a configuration change

• Bug: packet race – we need guarantees about when

configurations change with respect to events

• Don’t respond to an event too late

(and don’t respond too early)!

H1 H2

67

Initial configuration:
• Forward from 𝐻1 to 𝐻2 via 𝑆1-𝑆3-

𝑆4
• 𝑆3 has a firewall

Load balancer at 𝑺𝟏:
• Throughput greater than 500:

Start load balancing

- using path through 𝑆2
• Throughput less than 400:

Stop load balancing

Firewall on 𝑺𝟐:
Operator can enable/disable firewall

rules installed at 𝑆2

S1

H2

S2 S3

H1

S4

68

Problem:
• Load balancer on and

• Firewall on 𝑆2 off

General problem:
• Synchronization for event-

driven network programs
S1

H2

S2 S3

H1

S4

69

• Programming model: event nets

• Algorithmic synthesis of synchronization

Solution

70

• Places labeled by configurations

• Transitions labeled by events

• 1-safe Petri-nets

• Can be implemented without packet races

◦ (first part of the tutorial)

• Logical time bounds on when to change the

configuration can be given [PLDI16]

Event nets: One event-update

𝑃1 𝑃2
𝑒1

71

Event nets: Sequential Composition

𝑃1

𝑃2
𝑒1 𝑒2

𝑃3

72

Event nets: Parallel Composition

𝑃1 𝑃2
𝑒1

𝑃3 𝑃4
𝑒2

73

Event nets: Conflicting event-updates

𝑃1

𝑃2
𝑒1

𝑃3
𝑒2

• Locality condition:

which transition to take (e1 or e2) must be decided

locally

• Otherwise availability cannot be maintained [PLDI16]

(usual Consistency-Availability tension)

74

Programming Model: Event nets

• Can be implemented without packet races

• Can be implemented without losing availability

(under the locality restriction)

• Synchronization can be added to prevent

controller races

75

Load Balancing

S1

H2

S2 S3

H1

S4

𝑃1

𝑃2

𝑡𝑝 > 500

𝑡𝑝 < 300

𝑅1

𝑅2

firewall2 firewall2
downup

76

Load Balancing: synchronized

S1

H2

S2 S3

H1

S4

𝑃1

𝑃2

𝑡𝑝 > 500

𝑡𝑝 < 300

𝑅1

𝑅2

firewall2 firewall2
downup

Synchronization Synthesis
Eliminating Controller Races

77

78

Correctness when network programs execute concurrently?

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

Concurrent network programs

79

controller C1

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

80

controller C2

controller C1

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

Correctness when network programs execute concurrently?

Concurrent network programs

81

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding rules, and install 𝐻3 → 𝐻4 rules

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

82

• Example property: isolation — all packets entering the

network from 𝐻1 must exit at𝐻2.

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding rules, and install 𝐻3 → 𝐻4 rules

83

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

controller C2

• Potential bug: controller race

• Example property: isolation — all packets entering the

network from 𝐻1 must exit at𝐻2.

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding rules, and install 𝐻3 → 𝐻4 rules

84

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

controller C2

• Potential bug: controller race

• Example property: isolation — all packets entering the

network from 𝐻1 must exit at𝐻2.

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding rules, and install 𝐻3 → 𝐻4 rules

85

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

• Potential bug: controller race

• Example property: isolation — all packets entering the

network from 𝐻1 must exit at𝐻2.

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding rules, and install 𝐻3 → 𝐻4 rules

controller C2

86

mutex

Adding synchronization

barrier

• How can we model synchronization constructs?

• Synchronization skeletons:

a

b

c

d

orderin

g

a c

a c

b d

87

Synthesizing petri-net programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

• φ1: no packet originating at 𝐻1 should arrive at 𝐻4

• φ2: no packet originating at 𝐻3 should arrive at 𝐻2

• First counterexample: [𝐶, 𝐷], because { , } violates the spec

• Second counterexample: [𝐴, 𝐵], because { , } violates the

spec

88

Synthesizer Architecture

• LTL model checker (SPIN) returns trace (sequence of

events) which leads to a network configuration in which

the property is violated

▫︎ (also checks 1-safety)

• Synthesizer (Z3) produces Petri-net program

containing none of the buggy traces so far

LTL

89

Petri-net Synthesis Engine

n n+1 n+21 2 · · · · · · n+ X

a
d

d
e

d
p
la

c
e
s

p
la

c
e
s

SMT encoding for Petri-net programs:
Petri transitions added transitions Mark

1

2
...

m

m+ 1

m+ 2

...

m+ Y

Loc

90

Petri-net Synthesis Engine

n n+1 n+21 2 · · · · · · n+ X

a
d

d
e

d
p
la

c
e
s

p
la

c
e
s

SMT encoding for Petri-net programs:
Petri transitions added transitions Mark

1

2
...

m

m+ 1

m+ 2

...

m+ Y

(bout,bin) b

Loc

91

Petri-net Synthesis Engine
SMT encoding for synchronization skeletons:

1

2
...

I

1 2 · · · J

s
k
e
le

to
n

s

Type processesPair Range

(py1, py2, tx1, tx2)

(proc1, a1, b1)

(proc2, a2, b2)

“mutex”

We add constraints based on the finite set of counterexample traces

92

Experimental results - expressiveness

• Discovery vs Forwarding Modules, POX controller

[El Hassany et al]

• Discovery vs Forwarding Modules, NOX controller

[Scott et al]

• HTTP traffic monitoring vs Waypoint Enforcement

[Canini et al]

• Update vs Update

[Peresini et al]

Conflicting Controller modules:

93

Experimental results - scalability
We scaled up the topology on the previously-discussed Isolation

example

S1

S2

S3

S4

S5

H1

H2

H3

H4

We then measured total synthesizer runtime versus topology size

94

Experimental results – Topology Zoo

4

3.5

3

2.5

2

1.5

1

0.5

To
ta

l
S

y
n

th
.

T
im

e
(s

)

Network size (# switches)

95

Experimental results – Small World

7

6

5

4

3

2

1

To
ta

l
S

y
n

th
.

T
im

e
(s

)

Network size (# switches)

96

Experimental results – FatTree

1

10

100

To
ta

l
S

y
n

th
.

T
im

e
(s

)

0.1

Network s ize (# switches)

Optimizing Horn

Solvers for

Network Repair

[FMCAD ‘16,18]97

Software Synthesis

Input-Output

Examples

Synthesizer

Program

Partial

Program

Logical

Formula

98

Buggy

Progra

m

Software Repair

Network-wide

Configuration

Controller Run-Time

Application

Controller Platform

SDN with Buggy Cofiguration

99

100

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Down for

Maintenance
filter (H 1)

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Onlinefilter (H 1)

101

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Onlinefilter (H 1)

102

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Onlinefilter (H 1)

• How can we return back to safety by adding filters on

links?

• There are several possible repair solutions

• Interested in best solutions:
• e.g. the ones that touch minimal number of switches and maintain connectivity

103

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Onlinefilter (H 1)

104

• How can we return back to safety by adding filters on

links?

• There are several possible repair solutions

• Interested in best solutions:
• e.g. the ones that touch minimal number of switches and maintain connectivity

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Online

filter (H 1)

filter (H 1)

filter (H 1)

filter (H 1)

filter (H 1)

105

• How can we return back to safety by adding filters on

links?

• There are several possible repair solutions

• Interested in best solutions:
• e.g. the ones that touch minimal number of switches and maintain connectivity

H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Onlinefilter (H 1)

filter (H 1)

106

• How can we return back to safety by adding filters on

links?

• There are several possible repair solutions

• Interested in best solutions:
• e.g. the ones that touch minimal number of switches and maintain connectivity

107

• Translation of network and its correctness

conditions to logic (Horn clauses)

• Repair unsatisfiable Horn clauses

• (i.e. buggy system violating correctness)

• New lattice-based optimization procedure for Horn

clause repair

Contributions

108

𝑆1 𝑆2
𝑝2: 𝑝2′:

Forwarding Table

𝑝1
𝑝2
𝑝3

fwd 𝑆2

drop

rewrite 𝑝2′; fwd 𝑆2

pattern action

• Assume 𝑆𝑖(𝑝)means packet 𝑝 is at switch 𝑆𝑖
• 𝑆1 𝑝 ∧ (𝑝 = 𝑝1) → 𝑆2(𝑝)
• 𝑆1 𝑝 ∧ (𝑝 = 𝑝2) → 𝑆2(𝑝2′)
• 𝑆1 𝑝 ∧ 𝑝 = 𝑝3 → 𝐷 𝑝

• These formulae are called Horn clauses

𝑝2:

109

Host

1a1
Aggregation

T2
t

ToR T3
t2 3

T4
t 4

A 3a3
A 4a4

t 1

H 1 H2 H3 H4

not safe for H1 traffic

A 2a2

c1
Core c2

filter (H 1)

Ingress. H1 sends out the special traffic type 0

(typ = 0 ∧dst ∈ {2, 3, 4}) → t1(dst, typ)

(typ > 0 ∧ typ < 8 ∧dst ∈ {1, 3, 4}) → t2(dst, typ)

(typ > 0 ∧ typ < 8 ∧dst ∈ {1, 2, 4}) → t3(dst, typ)

(typ > 0 ∧ typ < 8 ∧dst ∈ {1, 2, 3}) → t4(dst, typ)

Horn Clauses for Network

110

Host

1a1
Aggregation

T2
t

ToR T3
t2 3

T4
t 4

A 3a3
A 4a4

t 1

H 1 H2 H3 H4

not safe for H1 traffic

A 2a2

c1
Core c2

filter (H 1)

We use a special relation symbol D for dropping a packet

→ a1(dst, typ)

→ a2(dst, typ)

t1(dst, typ) ∧(dst /= 1)

t1(dst, typ) ∧(dst /= 1)

t1(dst, typ) ∧¬ ((dst ≥ 1) ∧

(dst ≤ 4) ∧(typ ≥ 0) ∧(typ ≤ 7)) → D(dst, typ)

Horn Clauses for Network

111

Host

1a1
Aggregation

T2
t

ToR T3
t2 3

T4
t 4

A 3a3
A 4a4

t 1

H 1 H2 H3 H4

not safe for H1 traffic

A 2a2

c1
Core c2

filter (H 1)

Horn Clauses for Network

Properties. Flow 0 should not reach destination 4 or the drop state

t4(dst, typ) ∧(typ = 0)

D(dst, typ) ∧(typ = 0)

→ false

→ false

(typ = 0 ∧ dst ∈ {2, 3, 4}) → 𝐭𝟏(dst, typ)
…

𝐭𝟏 dst, typ ∧ dst ≠ 1 → 𝐚𝟏(dst, typ)
…

𝐚𝟏(dst,typ) ∧ (dst ≠ 1) ∧ (dst ≠ 2) → 𝐜𝟐(dst,typ)
…

𝐜𝟐 dst,typ ∧ dst = 3 ∨ dst = 4 → 𝐚𝟒(dst,typ)
…

𝐚𝟒(dst,typ) ∧ (dst = 4) → 𝐭𝟒(dst,typ)
…

t4(dst,typ) ∧ (typ = 0) → false

Network is safe Clauses are validiff

• Set of Horn Clauses

• An implication:

- Conjunction of positive literals in premise

- Single positive literal in conclusion

66

• Clauses are invalid here (dst = 4, typ = 0)

113

Horn Clause Solvers

• Duality

– http://research.microsoft.com/en-us/projects/duality/

• HSF

– http://www7.in.tum.de/tools/hsf/

• Eldarica

– http://lara.epfl.ch/w/eldarica

• PDR implementation in Z3

– http://z3.codeplex.com/

• SPACER

– http://spacer.bitbucket.org/

Eldarica
Program

Specification

https://github.com/uuverifiers/eldarica

Correct

Incorrect + counter-example

Time-out
Loop forever

Novel techniques for abstraction refinement:

1

2

Accelerated Intperolants

Disjunctive Interpolants

Support common representation languages

(Horn clauses, Numerical Transition Systems, ...)

[FM 2012] [ATVA 2012] [VSTTE 2013] [CAV 2013] [FMSD 2015]

Hossein Hojjat, Philipp Rüemmer
(Filip Konecný, Radu Iosif, Florent Garnier, Pavle Subotic and Viktor Kuncak)

https://github.com/uuverifiers/eldarica

115

Repair Framework

Network

Description

ϕ
Safety

Description

Horn Clauses:

∀v̄ . φ1(v¯)∧R1,1(v¯)..∧···∧Rn,1(v¯) → R0,1(v¯) HORN
SOLVER

(Eldarica)

Translate Repair Back

Weaken

Clauses

Strengthen

Clauses

(Optimizer)

∀v̄ . φ1(v¯)∧R1,1(v¯)..∧···∧Rn,1(v¯) → R0,1(v¯)

∀v̄ . φ1(v¯)∧R1,1(v¯)..∧···∧Rn,1(v¯) → R0,1(v¯)

116

Goal: find solutions for set of Horn clauses subject to objective function

Space of all interpretations of relation

symbols

117

Goal: find solutions for set of Horn clauses subject to objective function

Solutions

Best Solutions

Space of all interpretations of relation

symbols

118

Goal: find solutions for set of Horn clauses subject to objective function

Best Solutions

Solutions

Space of all interpretations of relation

symbols

119

Goal: find solutions for set of Horn clauses subject to objective function

···

Best Solutions

1 2 3 4 ···

∅

··· ···1 2 3 4

1∪2 2∪3 3 ∪4··· ···

all interpretations

⊆

···

Solutions

Space of all interpretations of relation

symbols

120

Goal: find solutions for set of Horn clauses subject to objective function

···

Best Solutions

1 2 3 4 ···

∅

··· ···1 2 3 4

1∪2 2∪3 3 ∪4··· ···

all interpretations

⊆

···

Space of all interpretations of relation

symbols

Solutions

121

Goal: find solutions for set of Horn clauses subject to objective function

···

Best Solutions

1 2 3 4 ···

∅

··· ···1 2 3 4

1∪2 2∪3 3 ∪4··· ···

all interpretations

⊆

···

Space of all interpretations of relation

symbols

Solutions

122

Goal: find solutions for set of Horn clauses subject to objective function

···

Best Solutions

1 2 3 4 ···

∅

··· ···1 2 3 4

1∪2 2∪3 3 ∪4··· ···

all interpretations

⊆

···

Space of all interpretations of relation

symbols

Solutions

123

Goal: find solutions for set of Horn clauses subject to objective function

Objective function:

Rank nodes of lattice monotonically
∅

··· ···

··· ···

all interpretations

⊆

···

Feasibility Frontier

124

Goal: find solutions for set of Horn clauses subject to objective function

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone

has maximum ranking

∅

··· ···

··· ···

all interpretations

⊆

···

Objective function:

Rank nodes of lattice monotonically

Feasibility Frontier

125

Goal: find solutions for set of Horn clauses subject to objective function

1• Pick a feasible node and walk until

reach frontier

∅

··· ···

··· ···

all interpretations

⊆

···

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone

has maximum ranking

Objective function:

Rank nodes of lattice monotonically

Feasibility Frontier

126

Goal: find solutions for set of Horn clauses subject to objective function

∅

··· ···

··· ···

all interpretations

⊆

···

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone

has maximum ranking

Objective function:

Rank nodes of lattice monotonically

Feasibility Frontier

1• Pick a feasible node and walk until

reach frontier

• Pick a lower rank incomparable

node and walk again

127

Goal: find solutions for set of Horn clauses subject to objective function

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone

has maximum ranking

Objective function:

Rank nodes of lattice monotonically

1• Pick a feasible node and walk until

reach frontier

• Pick a lower rank incomparable

node and walk again

• Use feasibility bounds as heuristic

to prune search

∅

··· ···

···

⊆

···

all interpretations

Feasibility Frontier

128

Goal: find solutions for set of Horn clauses subject to objective function

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone

has maximum ranking

Objective function:

Rank nodes of lattice monotonically

1• Pick a feasible node and walk until

reach frontier

• Pick a lower rank incomparable

node and walk again

• Use feasibility bounds as heuristic

to prune search

∅

··· ···

···

⊆

···

all interpretations

Feasibility Frontier

Search algorithm is guaranteed to terminate on finite lattices

Theorem

Optimization algorithm is sound and complete
.., Always finds the global optimum

Proof

Induction on lattice structure
.., use monotonicity of feasibility and objective function

Implementation and Experiments

130

• We use Internet Topology Zoo - real world topologies

• Randomly generate forwarding tables to connect hosts

• Make a set of nodes unsafe for certain types of traffics

• Repair the buggy network with updating a minimal number of

switchess

Implementation and Experiments

131

References

• Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and

David Walker. Abstractions for Network Update. (SIGCOMM 2012)

• Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster.

Efficient Synthesis of Network Updates. (PLDI 2015)

• Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerny. Event-

Driven Network Programming. (PLDI 2016)

• Hossein Hojjat, Philipp Rümmer, Jedidiah McClurg, Pavol Cerny, and

Nate Foster. Optimizing Horn Solvers for Network Repair. (FMCAD

2016)

• Jedidiah McClurg, Hossein Hojjat, Pavol Cerny.

Synchronization Synthesis for Network Programs. (CAV 2017)

132

Related Work
• Ratul Mahajan and Roger Wattenhofer. On Consistent Updates in

Software-Defined Networks. In ACM SIGCOMM Workshop on Hot

Topics in Networking (HotNets), November 2013.

• Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul

Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer.

Dynamic scheduling of network updates. in ACM SIGCOMM

Conference (SIGCOMM), August 2014.

• Giuseppe Bianchi, Marco Bonola, Salvatore Pontarelli, Davide Sanvito,

Antonio Capone, and Carmelo Cascone. Open Packet Processor: a

programmable architecture for wire speed platform-

independent stateful in-network processing. In arXiv CoRR

abs/1605.01977, May 2016.

• Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer

Rexford, and David Walker. SNAP: Stateful network-wide

abstractions for packet processing. In ACM SIGCOMM Conference

(SIGCOMM), August 2016. 133

What is next?

134

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

Traffic

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r

action learn() {
generate_digest(RECV, learn_digest);

}

table smac {
reads { ethernet.srcAddr : exact; }
actions { learn; nop; }
default_action: nop;

}

•Slogan: "constant work in constant
time"
- No pointers or complex data types
- Bounded state
- No loops

•Key construct is a match-action table

Match Action

00:00:00:00:00:01 learn

00:00:00:00:00:02 learn

* nop

header_type ethernet_t {
fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}

header_type intrinsic_metadata_t {
fields {
mcast_grp : 4;
egress_rid : 4;
mcast_hash : 16;
lf_field_list: 32;

}
}

header ethernet_t ethernet;
metadata intrinsic_metadata_t intrinsic_metadata;

parser start {
return parse_ethernet;

}

parser parse_ethernet {
extract(ethernet);
return ingress;

}

field_list mac_learn_digest {
ethernet.srcAddr;
standard_metadata.ingress_port;

}

action mac_learn() {
generate_digest(MAC_LEARN_RECEIVER, mac_learn_digest);

}

action forward(port) {
modify_field(standard_metadata.egress_spec, port);

}

action broadcast() {
modify_field(intrinsic_metadata.mcast_grp, 1);

}

table smac {
reads {

ethernet.srcAddr : exact;
}
actions {

mac_learn;
nop;

}
size : 512;

}

table dmac {
reads {

ethernet.dstAddr : exact;
}
actions {

forward;
broadcast;

}
size : 512;

}

table mcast_src_pruning {
reads {

standard_metadata.instance_type : exact;
}
actions {_

nop;
drop;

}
size : 1;

}

control ingress {
apply(smac);
apply(dmac);

}

control egress {
(if(standard_metadata.ingress_port ==

standard_metadata.egress_port) {
apply(mcast_src_pruning);

}
}

Example:

Ethernet Switch

149

