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It is a perfect time for the formal methods and 

programming languages communities 

to get more involved in networking research
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Conventional Networking
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There are
hosts...



Conventional Networking
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Connected by
switches...



Conventional Networking
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There are also
servers...



Conventional Networking
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Connected by
routers...



Conventional Networking
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And a load
balancer...



Conventional Networking
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And a gateway
router...



Conventional Networking
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There are other
ISPs...



Conventional Networking
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So we need to run
BGP...



Conventional Networking
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And we need a firewall to filter incoming
traffic...



Conventional Networking
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There are also wireless
hosts...



Conventional Networking
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So we need wireless
gateways...



Conventional Networking
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And yet more middleboxes for lawful
intercept...



Conventional Networking
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Each color represents a different set of
control  plane protocols and algorithms...



Conventional Networking
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Reasoning about network behavior is extremely

difficult

Does correctness matter? The Internet is best effort…

…the end-to-end principle says that hosts are
best equipped to deal with failures!



A network change was […] executed  

incorrectly […] more “stuck”volumes and added  
more requests to the re-mirroring storm

Twitter’s outage was related to an internal code change. 
We reverted the change, which fixed the issue

Example: Outages
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We discovered a misconfiguration on 
this  pair of switches that caused what's 
called a  “bridge loop” in thenetwork

Experienced a network connectivity issue
[…]
interrupted the airline's flight departures,  

airport processing and reservations

systems

Even technically sophisticated companies are 
struggling  to build networks that provide reliable
service to users

هبداشتوجودمودمافزارنرمدرکهباگیدلیلبه[...]روترهاازکیی

کردادهاستفنفوذبرایپذیریآسیباینازفردیکونشدروزرسانی



Software-Defined Networking
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A clean-slate architecture based on two key ideas: 

• Generalize network devices

• Separate control and forwarding
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A clean-slate architecture based on two key ideas: 

• Generalize network devices

• Separate control and forwarding



Programmable Data Planes

Global Visibility and 

Control

Open APIs

Your Program goes here!
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Enabling use of 

reasoning techniques 

typically associated 

with the programming 

languages and 

verification 

communities

Software-Defined Networking



But how do we write 

all of this software?

23



Software Synthesis

What if programmers could...

•Sketch the structure of their program...

•Give examples and scenarios...

•Specify functional behavior...

•Write down high-level requirements...

•Express resource constraints...

...and a tool automatically synthesized a correct 

and efficient implementation?

24



Software Synthesis

Specification

Synthesizer

Program

25



Specification

Software Synthesis

Input-Output

Examples

Synthesizer

Program

Partial

Program

Logical

Formula

Programmers can express 

their insights in a wide variety 

of ways, not just in standard 

code!
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• Does software synthesis really 

work?

• Answer: yes - for certain domains

27



•Programs are large, but simple and 

highly structured—e.g., loop free!

•The desired behavior of the network is 

often clear (at least at an intuitive level)

•Most difficult aspects of network 

programming stem from limited 

resources and inherent concurrency

Synthesis for Networks

28



This Tutorial

Outline:

•Network Update Synthesis

•Synchronization for Network Programs

•Optimizing Horn Solvers for Network Repair

Synthesis is an effective means for 

automating some of the trickiest 

aspects of network programming

29



Efficient Synthesis 

of Network Updates

[SIGCOMM '12, PLDI '15]
30



Network-wide 

Configuration

Controller Run-Time

…

Application

Host

change
Topology

change

Traffic

statistics

Network-wide 

ConfigurationNetwork-wide 

ConfigurationNetwork-wide 

Configuration

Controller Platform

Dynamic SDN Applications
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Network Updates

Initial State 

Target State

How can we transition 

between global states?

Problem: naive updates 

can break important 

invariants! 32



Example: Data Center
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H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4



Network Configuration
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H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4



Network Update
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T1 T2 T4

A1 A2

C1 C2

T3

A3 A4

• Update program:

upd T1; upd C2; upd A3; upd A1

H1 H2 H3 H4



Naïve Update
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H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Possible problem: black holes



Naïve Update
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H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Possible problem: access control violation

Example: 

Firewall on A1 

and A4.



At 12:47 AM PDT on April 21st, a network change was performed 

as part of our normal scaling activities...

During the change, one of the steps is to shift traffic off of one of 

the redundant routers...

The traffic shift was executed incorrectly and the traffic was 

routed onto the lower capacity redundant network. 

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of connection 

attempts was extremely high and nodes began to fail, resulting in 

more volumes left needing to re-mirror. This added more 

requests to the re-mirroring storm...

The trigger for this event was a network configuration change.

Is This Really a Problem?

38



Outages Cost a Lot

39

https://www.buzzfeednews.com/article/mattlynley/the-high-cost-of-an-amazon-outage

• Aug 13, 2013, Amazon was down for roughly 40 minutes 

• It lost $1,104 in net sales per second, on average



Per-Packet Consistency
Consistency Guarantee: every 

packet (or flow) in the network 

“sees” a single policy version

Two-Phase Update:

•Tag configurations with 

versions 

•Stamp incoming packets

• Install new configuration in core

• Install new configuration at 

edge

•Wait for in-flight packets to exit

•Delete old configurations

40

å

Limitations:

•Doubles peak memory usage

•Updates are slow to implement



Per-Packet Consistent Updates

Questions:

• Can we implement a per-packet consistent 

update by simply updating switches in the right 

order?

• If not, can we relax the requirements in a 

reasonable way to obtain an efficient 

Theorem (Universal 

Property Preservation): a 

network update is per-packet 

consistent if and only if it 

preserves all safety 

properties.

41



H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

Update: upd T1; upd C2; upd A3; upd A1 
✔

Example: Data Center
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Naive Update

• Update: upd A2; upd A4; upd T1; upd C1 ✗
• Update: upd A2; upd A4; upd C1; upd T1 ✗
• There is no update that ensures per-packet

consistency

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4
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Relaxing Per-Packet Consistency

Idea: all packets eventually delivered via A1 or A4

H1 H2

T1 T2

H3

T4

A1 A2

C1 C2

T3

A3

H4

A4

• Update: upd A2; upd A4; upd T1; upd C1 ✗
• Update: upd A2; upd A4; upd C1; upd T1 
✔

44



How to Specify Properties?

Reachability: every packet that starts at si reaches di

Waypointing: all packets traverse w before exiting

Chaining: all packets traverse w1 and w2 before 

exiting

LTL: (si →F di)

LTL: (¬g U w) ∧ F g

LTL: (¬g U w2 )∧ (¬w2 U w1 )∧ F g
45



LTL 

Specification

Network Update Synthesis

Update 

Synthesizer

Update 

Program

Initial and 

Final 

Configuration

s

Update at 

most once

46



Synthesis Algorithm

φ
LTL

Specification

Old and New 

Configurations

45



Synthesis Algorithm

Depth-First Search:

• Attempt to update the 

switches one-by-one

• Backtrack whenever a 

bad configuration is 

reached
Challenges:

• Search space is huge

• Checking a configuration 

means solving an LTL 

model checking problem 

(PSPACE-complete)!

Two main ideas:

•Learn from counter-examples to 

aggressively prune the search space

•Use an incremental model checker

48



❑ all packets reach H3

❑ all packets traverse firewall 

Model M:

Specification S:

Question: Does M satisfy S?

Model Checking



H1 H3

❑ R holds at a switch s if all packets that traverse s reach H3

❑ FW holds at a switch s if all packets that traverse s then 

traverse firewall 

R∧ ¬FW

R∧ ¬FW

R∧ ¬FW R∧ FW

R∧ ¬FW

R∧ ¬FWR∧ FW

R∧FW

R∧FW

Model Checking



H1 H3
R∧ ¬FW

R∧ ¬FW

R∧ ¬FW R∧ FW

R∧ ¬FW

R∧ ¬FW

R∧ FW

R∧FW

R∧FWR∧ ¬FW

Incremental model checking

❑ R holds at a switch s if all packets that traverse s reach H3

❑ FW holds at a switch s if all packets that traverse s then 

traverse firewall 

R∧ ¬FW



One sentence summary: 

The idea is the same as in LTL-to-Büchi construction, 

but on loop-free structures it is possible to check all 

constraints locally (no need for the Büchi condition)

Model checking loop-free 

structures



Main Limitation

For some topologies, configurations, and 

specifications, there is no correct ordering we can use

Example: "double diamond" [DISC '16]

Our implementation reverts to a two-phase update...
53



Waits
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Internet

S3

S2

S1

LAN
1

Update2

Update1

LAN
2

LAN
3

Not Safe for SSH traffic

SSH

≠ SSH



Waits

55

• Correspondence to weak memory systems

• Equivalence of two problems:
1) Finding a correct and efficient placement of fences for a 

concurrent  program under weak memory model

2) Finding minimum number of waits for an update

sequence



Evaluation
Questions:

• Impact of optimizations:

‣ Pruning search space 

‣ Incremental model checking

• Scalability of approach:

‣ Topology

‣ Complexity of specifications

‣ Total space explored

Methodology:

• Real-world topologies (TopoZoo, FatTrees, Small 

World)

• Synthetic configurations (e.g., shortest-path 

forwarding)

Fattree

Small-world

56



Impact of Optimizations

• Configurations: shortest-path 

forwarding

• LTL Specification: all-pairs reachability 

T
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co
n
d
s
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n
d
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Figure 7: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology Zoo, FatTree, Small-World
topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

Figure 8: (g) Scalability of Incremental on Small-World topologies of in-
creasing size; (h) Scalability when no correct switch-granularity updateex-
ists (i.e. algorithm reports “ impossible”), and (i) Scalability of fine-grained
(rule-granularity) approach for solving switch-impossible examples in (h).

report counterexamples, putting it at a disadvantage in this end-
to-end comparison, so we also measured total Incremental versus
NetPlumber runtime on the same set of model-checking questions
posed by Incremental for theSmall-World example. Our tool isstill
faster on all instances, with amean speedup of 2.74x.

Scalability. To quantify our tool’s scalability, we constructed
Small World topologies with up to 1500 switches, and ran experi-
ments with large diamond updates—the largest has 1015 switches
updating. The results appear in Figure 8(g). Themaximum synthe-
sis times for the three properties were 129.04s, 30.11s, and 0.85s,
which shows that our tool scales to problems of realistic size.

Infeasible Updates. We also considered examples for which
there is no switch-granular update. Figure 8(h) shows the results
of experimentswherewegenerated asecond diamond atop thefirst
one, requiring it to route traffic in the opposite direction. Using
switch-granularity, the inputs are reported as unsolvable in maxi-
mumtime153.48s, 33.48s, and 0.69s. Using rule-granularity, these
inputs are solved successfully for up to 1000 switches with maxi-
mum times of 776.13s, 512.84s, and 82.00s (see Figure 8(i)).

Waits. We also separately measured the time needed to run the
wait-removal heuristic for the Figure 8 experiments. For (g), the
maximum wait-removal runtime was 0.89s, resulting in 2 needed
waitsfor each instance. For (i), themaximum wait-removal runtime
was 103.87s, resulting in about 2.6 waits on average (with amaxi-
mum of 4). For the largest problems in (g) and (i), thiscorresponds
to removal of 1397/ 1399 and 55823/ 55826 waits (about 99.9%).

7. Related Work

This paper extends preliminary work reported in a workshop pa-
per [30]. We present a more precise and realistic network model,
and replaceexpensivecalls to an external model checker with calls
to a new built-in incremental network model checker. We extend
the DFS search procedure with optimizations and heuristics that
improveperformancedramatically. Finally, weevaluateour tool on
acomprehensiveset of benchmarks with real-world topologies.

Synthesisof concurrent programs. Thereismuch previouswork
on synthesis for concurrent programs [12, 35, 38]. In particular,
work by Solar-Lezamaet al. [35] and Vechev et al. [38] synthesizes
sequences of instructions. However, traditional synthesis and syn-
thesis for networking arequitedifferent. First, traditional synthesis
is a game against the environment which (in the concurrent pro-
gramming case) provides inputsand schedules threads; in contrast,
our synthesis problem involves reachability on thespaceof config-
urations. Second, our spaceof configurations is very rich, meaning
that checking configurations is itself amodel checking problem.

Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g. avoid-
ing packet/bandwidth lossduring planned maintenanceto BGP[10,
32]. Other work avoids routing loops and blackholes during IGP
migration [36]. Work on network updates in SDN proposed the
notion of consistent updates and several implementation mech-
anisms, including two-phase updates [33]. Other work explores
propagating updates incrementally, reducing thespaceoverhead on
switches [17]. Asmentioned in Section 2, recent work proposesor-
dering updates for specific properties [15], whereas we can handle
combinationsand variantsof theseproperties. Furthermore, SWAN
and zUpdate add support for bandwidth guarantees [13, 23]. Zhou
et al. [40] consider customizabletraceproperties, and proposeady-
namic algorithm to find order updates. This solution can take into
account unpredictable delays caused by switch updates. However,
it may not alwaysfind asolution, even if oneexists. In contrast, we
obtain a completeness guarantee for our static algorithm. Ludwig
et al. [24] consider ordering updates for waypointing properties.

Model checking. Model checking hasbeen used for network ver-
ification [2, 18, 20, 26, 27]. The closest to our work is the incre-
mental checker NetPlumber [19]. Surface-level differences include
thespecification languages (LTL vs. regular expressions), and Net-
Plumber’s lack of counterexample output. The main difference is
incrementality: Netplumber restricts checking to “probe nodes,”
keeping track of “header-space” reachability information for those
nodes, and then performing property queries based on this. In con-
trast, we look at the property, keeping track of portions of the
property holding at each node, which keeps incremental recheck-
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Figure 7: Relative performance results: (a-c) Performance of Incremental vs. NuSMV, Batch, NetPlumber solvers on Topology Zoo, FatTree, Small-World
topologies (columns); (d-f) Performance of Incremental vs. NetPlumber (rule-granularity).

Figure 8: (g) Scalability of Incremental on Small-World topologies of in-
creasing size; (h) Scalability when no correct switch-granularity updateex-
ists (i.e. algorithm reports “ impossible” ), and (i) Scalability of fine-grained
(rule-granularity) approach for solving switch-impossible examples in (h).

report counterexamples, putting it at a disadvantage in this end-
to-end comparison, so we also measured total Incremental versus
NetPlumber runtime on the same set of model-checking questions
posed by Incremental for theSmall-World example. Our tool isstill
faster on all instances, with a mean speedup of 2.74x.

Scalability. To quantify our tool’s scalability, we constructed
Small World topologies with up to 1500 switches, and ran experi-
ments with large diamond updates—the largest has 1015 switches
updating. The results appear in Figure 8(g). The maximum synthe-
sis times for the three properties were 129.04s, 30.11s, and 0.85s,
which shows that our tool scales to problems of realistic size.

Infeasible Updates. We also considered examples for which
there is no switch-granular update. Figure 8(h) shows the results
of experimentswherewegenerated asecond diamond atop thefirst
one, requiring it to route traffic in the opposite direction. Using
switch-granularity, the inputs are reported as unsolvable in maxi-
mum time153.48s, 33.48s, and 0.69s. Using rule-granularity, these
inputs are solved successfully for up to 1000 switches with maxi-
mum times of 776.13s, 512.84s, and 82.00s (see Figure 8(i)).

Waits. We also separately measured the time needed to run the
wait-removal heuristic for the Figure 8 experiments. For (g), the
maximum wait-removal runtime was 0.89s, resulting in 2 needed
waitsfor each instance. For (i), themaximum wait-removal runtime
was 103.87s, resulting in about 2.6 waits on average (with a maxi-
mum of 4). For the largest problems in (g) and (i), thiscorresponds
to removal of 1397/ 1399 and 55823/ 55826 waits (about 99.9%).

7. Related Work

This paper extends preliminary work reported in a workshop pa-
per [30]. We present a more precise and realistic network model,
and replace expensivecalls to an external model checker with calls
to a new built-in incremental network model checker. We extend
the DFS search procedure with optimizations and heuristics that
improveperformancedramatically. Finally, weevaluateour tool on
a comprehensive set of benchmarks with real-world topologies.

Synthesisof concurrent programs. Thereismuch previouswork
on synthesis for concurrent programs [12, 35, 38]. In particular,
work by Solar-Lezamaet al. [35] and Vechev et al. [38] synthesizes
sequences of instructions. However, traditional synthesis and syn-
thesis for networking arequitedifferent. First, traditional synthesis
is a game against the environment which (in the concurrent pro-
gramming case) provides inputs and schedules threads; in contrast,
our synthesis problem involves reachability on thespace of config-
urations. Second, our space of configurations is very rich, meaning
that checking configurations is itself a model checking problem.

Network updates. There are many protocol- and property-
specific algorithms for implementing network updates, e.g. avoid-
ing packet/bandwidth lossduring planned maintenanceto BGP[10,
32]. Other work avoids routing loops and blackholes during IGP
migration [36]. Work on network updates in SDN proposed the
notion of consistent updates and several implementation mech-
anisms, including two-phase updates [33]. Other work explores
propagating updates incrementally, reducing thespaceoverhead on
switches [17]. Asmentioned in Section 2, recent work proposesor-
dering updates for specific properties [15], whereas we can handle
combinationsand variantsof theseproperties. Furthermore, SWAN
and zUpdate add support for bandwidth guarantees [13, 23]. Zhou
et al. [40] consider customizable traceproperties, and proposeady-
namic algorithm to find order updates. This solution can take into
account unpredictable delays caused by switch updates. However,
it may not alwaysfind asolution, even if oneexists. In contrast, we
obtain a completeness guarantee for our static algorithm. Ludwig
et al. [24] consider ordering updates for waypointing properties.

Model checking. Model checking hasbeen used for network ver-
ification [2, 18, 20, 26, 27]. The closest to our work is the incre-
mental checker NetPlumber [19]. Surface-level differences include
thespecification languages (LTL vs. regular expressions), and Net-
Plumber’s lack of counterexample output. The main difference is
incrementality: Netplumber restricts checking to “probe nodes,”
keeping track of “header-space” reachability information for those
nodes, and then performing property queries based on this. In con-
trast, we look at the property, keeping track of portions of the
property holding at each node, which keeps incremental recheck-
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Scalability

• Configurations: "diamond" / "double diamond"

• Specifications: reachability, waypointing, 

chaining
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Synchronization for 

Network Programs

[PLDI’16,CAV ‘17]59
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Stateful Firewall

H1 H2

•H1  should be  allowed  to communicate with H2

•H2 should only be allowed to communicate with H1 if 

H1 has  previously initiated a connection
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Stateful Firewall

•H1  should be  allowed  to communicate with H2

•H2 should only be allowed to communicate with H1 if 

H1 has  previously initiated a connection

H1 H2
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Stateful Firewall

•H1  should be  allowed  to communicate with H2

•H2 should only be allowed to communicate with H1 if 

H1 has  previously initiated a connection

H1 H2
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Stateful Firewall

•H1  should be  allowed  to communicate with H2

•H2 should only be allowed to communicate with H1 if 

H1 has  previously initiated a connection

H1 H2
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Stateful Firewall

•H1  should be  allowed  to communicate with H2

•H2 should only be allowed to communicate with H1 if 

H1 has  previously initiated a connection

H1 H2
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Stateful Firewall

H1 H2

•H1  should be  allowed  to communicate with H2

•H2 should only be allowed to communicate with H1 if 

H1 has  previously initiated a connection
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Stateful Firewall

• An event can trigger a configuration change

• Bug: packet race – we need guarantees about when 

configurations change with respect to events

• Don’t respond to an event too late 

(and don’t respond too early)!

H1 H2
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Initial configuration:
• Forward from 𝐻1 to 𝐻2 via 𝑆1-𝑆3-

𝑆4
• 𝑆3 has a firewall

Load balancer at 𝑺𝟏:
• Throughput greater than 500: 

Start load balancing 

- using path through 𝑆2
• Throughput less than 400:

Stop load balancing

Firewall on 𝑺𝟐:
Operator can enable/disable firewall 

rules installed at 𝑆2

S1

H2

S2 S3

H1

S4
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Problem:
• Load  balancer  on  and  

• Firewall on 𝑆2 off

General problem:
• Synchronization for event-

driven network programs
S1

H2

S2 S3

H1

S4
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• Programming model: event nets

• Algorithmic synthesis of synchronization

Solution
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• Places labeled by configurations

• Transitions labeled by events

• 1-safe Petri-nets

• Can be implemented without packet races

◦ (first part of the tutorial)

• Logical time bounds on when to change the 

configuration can be given [PLDI16]

Event nets: One event-update

𝑃1 𝑃2
𝑒1
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Event nets: Sequential Composition

𝑃1

𝑃2
𝑒1 𝑒2

𝑃3
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Event nets: Parallel Composition

𝑃1 𝑃2
𝑒1

𝑃3 𝑃4
𝑒2
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Event nets: Conflicting event-updates

𝑃1

𝑃2
𝑒1

𝑃3
𝑒2

• Locality condition: 

which transition to take (e1 or e2) must be decided

locally

• Otherwise availability cannot be maintained [PLDI16]

(usual Consistency-Availability tension)
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Programming Model: Event nets

• Can be implemented without packet races

• Can be implemented without losing availability 

(under the locality  restriction)

• Synchronization can be added to prevent 

controller races
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Load Balancing

S1

H2

S2 S3

H1

S4

𝑃1

𝑃2

𝑡𝑝 > 500

𝑡𝑝 < 300

𝑅1

𝑅2

firewall2 firewall2
downup
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Load Balancing: synchronized

S1

H2

S2 S3

H1

S4

𝑃1

𝑃2

𝑡𝑝 > 500

𝑡𝑝 < 300

𝑅1

𝑅2

firewall2 firewall2
downup



Synchronization Synthesis 
Eliminating Controller Races

77
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Correctness when network programs execute concurrently?

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

Concurrent network programs
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controller C1

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4
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controller C2

controller C1

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

Correctness when network programs execute concurrently?

Concurrent network programs
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• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding  rules, and install 𝐻3 → 𝐻4 rules

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4
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• Example property: isolation — all packets entering the 

network  from 𝐻1 must exit at𝐻2.

Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding  rules, and install 𝐻3 → 𝐻4 rules
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Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

controller C2

• Potential bug: controller race

• Example property: isolation — all packets entering the 

network  from 𝐻1 must exit at𝐻2.

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding  rules, and install 𝐻3 → 𝐻4 rules
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Correctness when network programs execute concurrently?

Concurrent network programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

• Potential bug: controller race

• Example property: isolation — all packets entering the 

network  from 𝐻1 must exit at𝐻2.

• Network operator wants to take down the 𝐻1 → 𝐻2

forwarding  rules, and install 𝐻3 → 𝐻4 rules

controller C2
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mutex

Adding synchronization

barrier

• How can we model synchronization constructs?  

• Synchronization skeletons:

a

b

c

d

orderin

g

a c

a c

b d
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Synthesizing petri-net programs

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝐻1

𝐻2

𝐻3

𝐻4

• φ1: no packet originating at 𝐻1 should arrive at 𝐻4

• φ2: no packet originating at 𝐻3 should arrive at 𝐻2

• First counterexample: [𝐶, 𝐷], because {  ,      } violates the spec

• Second counterexample: [𝐴, 𝐵], because { ,  } violates the 

spec
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Synthesizer Architecture

• LTL model checker (SPIN) returns trace (sequence of 

events) which leads to a network configuration in which 

the property is violated

▫︎ (also checks 1-safety)

• Synthesizer (Z3) produces Petri-net program 

containing none of  the buggy traces so far

LTL
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Petri-net Synthesis Engine
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Petri-net Synthesis Engine

n n+1  n+21 2 · · · · · · n+ X

a
d

d
e

d
p
la

c
e
s

p
la

c
e
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SMT encoding for Petri-net programs:
Petri transitions added transitions Mark

1

2
...

m  

m+ 1  

m+ 2

...

m+ Y

(bout,bin) b

Loc
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Petri-net Synthesis Engine
SMT encoding for synchronization skeletons:

1

2
...

I

1 2 · · · J

s
k
e
le

to
n

s

Type processesPair Range

(py1, py2, tx1, tx2)

(proc1, a1, b1)

(proc2, a2, b2)

“mutex”

We add constraints based on the finite set of counterexample  traces
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Experimental results - expressiveness

• Discovery vs Forwarding Modules, POX controller 

[El Hassany et  al]

• Discovery vs Forwarding Modules, NOX controller 

[Scott et al]

• HTTP traffic monitoring vs Waypoint Enforcement 

[Canini et al]  

• Update vs Update 

[Peresini et al]

Conflicting Controller modules:
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Experimental results - scalability
We scaled up the topology on the previously-discussed Isolation

example

S1

S2

S3

S4

S5

H1

H2

H3

H4

We then measured total synthesizer runtime versus topology size
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Experimental results – Topology Zoo
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Experimental results – Small World
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Experimental results – FatTree
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Optimizing Horn 

Solvers for 

Network Repair

[FMCAD ‘16,18]97



Software Synthesis

Input-Output

Examples

Synthesizer

Program

Partial

Program

Logical

Formula

98

Buggy 

Progra

m

Software Repair



Network-wide 

Configuration

Controller Run-Time

Application

Controller Platform

SDN with Buggy Cofiguration

99
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A 3
A 3

A 4
A 4

H2 H3 H4

not safe  for H1 traffic

A 2
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C1
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Core C2
C2

Down for  

Maintenance
filter (H 1 )
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H 1

T1
T1

Host

A 1
A 1

Aggregation

T2
T2

ToR T3
T3

T4
T4

A 3
A 3

A 4
A 4

H2 H3 H4

not safe  for H1 traffic

A 2
A 2

C1
C1

Core C2
C2

Switch Onlinefilter (H 1 )

• How can we return back to safety by adding filters on 

links?  

• There are  several  possible  repair solutions

• Interested in best solutions:
• e.g.  the ones  that touch minimal number of switches and maintain connectivity
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• How can we return back to safety by adding filters on 

links?  

• There are  several  possible  repair solutions

• Interested in best solutions:
• e.g.  the ones  that touch minimal number of switches and maintain connectivity
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• How can we return back to safety by adding filters on 

links?  

• There are  several  possible  repair solutions

• Interested in best solutions:
• e.g.  the ones  that touch minimal number of switches and maintain connectivity
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• How can we return back to safety by adding filters on 

links?  

• There are  several  possible  repair solutions

• Interested in best solutions:
• e.g.  the ones  that touch minimal number of switches and maintain connectivity
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• Translation of network and  its correctness  

conditions to logic (Horn clauses)

• Repair unsatisfiable Horn clauses 

• (i.e. buggy system violating  correctness)

• New  lattice-based optimization procedure for Horn 

clause repair

Contributions
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𝑆1 𝑆2
𝑝2: 𝑝2′:

Forwarding Table

𝑝1
𝑝2
𝑝3

fwd 𝑆2

drop

rewrite 𝑝2′; fwd 𝑆2

pattern action

• Assume 𝑆𝑖(𝑝)means packet 𝑝 is at switch 𝑆𝑖
• 𝑆1 𝑝 ∧ (𝑝 = 𝑝1) → 𝑆2(𝑝)
• 𝑆1 𝑝 ∧ (𝑝 = 𝑝2) → 𝑆2(𝑝2′)
• 𝑆1 𝑝 ∧ 𝑝 = 𝑝3 → 𝐷 𝑝

• These formulae are called Horn clauses

𝑝2:
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Host

1a1
Aggregation 

T2
t

ToR T3
t2 3

T4
t 4

A 3a3
A 4a4

t 1

H 1 H2 H3 H4

not safe  for H1 traffic

A 2a2

c1
Core c2

filter (H 1 )

Ingress.  H1 sends  out the special traffic type 0

(typ = 0 ∧dst ∈ {2, 3, 4}) → t1(dst, typ)

(typ > 0 ∧ typ < 8 ∧dst ∈ {1, 3, 4}) → t2(dst, typ)

(typ > 0 ∧ typ < 8 ∧dst ∈ {1, 2, 4}) → t3(dst, typ)

(typ > 0 ∧ typ < 8 ∧dst ∈ {1, 2, 3}) → t4(dst, typ)

Horn Clauses  for Network



110

Host

1a1
Aggregation 

T2
t

ToR T3
t2 3

T4
t 4

A 3a3
A 4a4

t 1

H 1 H2 H3 H4

not safe  for H1 traffic

A 2a2

c1
Core c2

filter (H 1 )

We  use  a  special relation symbol D  for dropping a packet

→ a1(dst, typ)

→ a2(dst, typ)

t1(dst, typ) ∧(dst /=  1)

t1(dst, typ) ∧(dst /=  1)

t1(dst, typ) ∧¬ ( (dst ≥ 1) ∧

(dst ≤ 4) ∧(typ ≥ 0) ∧(typ ≤ 7) ) → D(dst, typ)

Horn Clauses  for Network
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Host

1a1
Aggregation 

T2
t

ToR T3
t2 3

T4
t 4

A 3a3
A 4a4

t 1

H 1 H2 H3 H4

not safe  for H1 traffic

A 2a2

c1
Core c2

filter (H 1 )

Horn Clauses  for Network

Properties.  Flow 0  should not reach  destination 4  or the drop state

t4(dst, typ) ∧(typ = 0)

D(dst, typ) ∧(typ = 0)

→ false

→ false



(typ = 0 ∧ dst ∈ {2, 3, 4}) → 𝐭𝟏(dst, typ)
…

𝐭𝟏 dst, typ ∧ dst ≠ 1 → 𝐚𝟏(dst, typ)
…

𝐚𝟏(dst,typ) ∧ (dst ≠ 1) ∧ (dst ≠ 2) → 𝐜𝟐(dst,typ)
…

𝐜𝟐 dst,typ ∧ dst = 3 ∨ dst = 4 → 𝐚𝟒(dst,typ)
…

𝐚𝟒(dst,typ) ∧ (dst = 4) → 𝐭𝟒(dst,typ)
…

t4(dst,typ) ∧ (typ = 0) → false

Network is safe Clauses are validiff

• Set of Horn Clauses

• An implication: 

- Conjunction of positive literals in premise

- Single positive literal in conclusion

66

• Clauses are invalid here (dst = 4, typ = 0)
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Horn Clause Solvers

• Duality

– http://research.microsoft.com/en-us/projects/duality/

• HSF

– http://www7.in.tum.de/tools/hsf/

• Eldarica

– http://lara.epfl.ch/w/eldarica

• PDR implementation in Z3

– http://z3.codeplex.com/

• SPACER

– http://spacer.bitbucket.org/



Eldarica
Program

Specification

https://github.com/uuverifiers/eldarica

Correct

Incorrect + counter-example

Time-out  
Loop forever

Novel techniques for abstraction refinement:

1

2

Accelerated Intperolants  

Disjunctive Interpolants

Support common representation languages  

(Horn clauses, Numerical Transition Systems, ...)

[FM 2012] [ATVA 2012] [VSTTE 2013] [CAV 2013] [FMSD 2015]

Hossein Hojjat, Philipp Rüemmer
(Filip Konecný, Radu Iosif, Florent Garnier, Pavle Subotic and Viktor  Kuncak)

https://github.com/uuverifiers/eldarica
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Repair Framework

Network

Description

ϕ
Safety

Description

Horn Clauses:

∀v̄ . φ1(v¯)∧R1,1(v¯)..∧···∧Rn,1(v¯) → R0,1(v¯) HORN  
SOLVER

(Eldarica)

Translate Repair Back

Weaken

Clauses

Strengthen

Clauses

(Optimizer)

∀v̄ . φ1(v¯)∧R1,1(v¯)..∧···∧Rn,1(v¯) → R0,1(v¯)

∀v̄ . φ1(v¯)∧R1,1(v¯)..∧···∧Rn,1(v¯) → R0,1(v¯)
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

Space of all  interpretations of relation

symbols
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

Solutions

Best Solutions

Space of all  interpretations of relation

symbols
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

···

Best Solutions

1 2 3 4 ···
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··· ···1 2 3 4

1∪2 2∪3 3 ∪4··· ···

all interpretations

⊆

···

Solutions

Space of all  interpretations of relation

symbols
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Goal:  find solutions for set  of Horn clauses  subject to objective  function
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

···

Best Solutions

1 2 3 4 ···

∅

··· ···1 2 3 4

1∪2 2∪3 3 ∪4··· ···

all interpretations

⊆

···

Space of all  interpretations of relation
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

Objective function:

Rank nodes  of lattice monotonically
∅

··· ···

··· ···

all interpretations

⊆

···

Feasibility Frontier
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone 

has maximum ranking

∅

··· ···

··· ···

all interpretations

⊆

···

Objective function:

Rank nodes  of lattice monotonically

Feasibility Frontier
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

1• Pick a feasible node and walk until  

reach frontier

∅

··· ···

··· ···

all interpretations

⊆

···

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone 

has maximum ranking

Objective function:

Rank nodes  of lattice monotonically

Feasibility Frontier
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

∅

··· ···

··· ···

all interpretations

⊆

···

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone 

has maximum ranking

Objective function:

Rank nodes  of lattice monotonically

Feasibility Frontier

1• Pick a feasible node and walk until  

reach frontier

• Pick a lower rank incomparable  

node and walk  again
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone 

has maximum ranking

Objective function:

Rank nodes  of lattice monotonically

1• Pick a feasible node and walk until  
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• Pick a lower rank incomparable  

node and walk  again

• Use feasibility bounds as heuristic 

to  prune search
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Goal:  find solutions for set  of Horn clauses  subject to objective  function

Search Algorithm:

Walk smartly in the lattice to find the

best solution:
inside the feasibility cone 

has maximum ranking

Objective function:

Rank nodes  of lattice monotonically

1• Pick a feasible node and walk until  

reach frontier

• Pick a lower rank incomparable  

node and walk  again

• Use feasibility bounds as heuristic 

to  prune search

∅

··· ···

···

⊆

···

all interpretations

Feasibility Frontier



Search  algorithm is  guaranteed  to terminate on  finite lattices

Theorem

Optimization algorithm is sound  and complete
..,   Always finds the global optimum

Proof

Induction on lattice structure
..,   use  monotonicity of feasibility and objective function



Implementation and Experiments

130

• We use Internet Topology Zoo - real world topologies

• Randomly generate forwarding tables to connect hosts

• Make a set of nodes unsafe for certain types of traffics

• Repair the buggy network with updating a minimal number of 

switchess



Implementation and Experiments
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134



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



Traffic  

Manage

r

Parse
r

Ingres
s

Egres
s

Deparse
r



action learn() {
generate_digest(RECV, learn_digest);

}

table smac {
reads { ethernet.srcAddr : exact; }  
actions { learn; nop; }  
default_action: nop;

}

•Slogan: "constant work in constant
time"
- No pointers or complex data types
- Bounded state
- No loops

•Key construct is a match-action table

Match Action

00:00:00:00:00:01 learn

00:00:00:00:00:02 learn

* nop



header_type ethernet_t {  
fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}

header_type intrinsic_metadata_t {  
fields {
mcast_grp : 4;
egress_rid : 4;
mcast_hash : 16;
lf_field_list: 32;

}
}

header ethernet_t ethernet;
metadata intrinsic_metadata_t intrinsic_metadata;

parser start {
return parse_ethernet;

}

parser parse_ethernet {  
extract(ethernet);  
return ingress;

}

field_list mac_learn_digest {  
ethernet.srcAddr;  
standard_metadata.ingress_port;

}

action mac_learn() {  
generate_digest(MAC_LEARN_RECEIVER, mac_learn_digest);

}

action forward(port) {  
modify_field(standard_metadata.egress_spec, port);

}

action broadcast() {  
modify_field(intrinsic_metadata.mcast_grp, 1);

}

table smac {  
reads {

ethernet.srcAddr : exact;
}
actions {  

mac_learn;  
nop;

}
size : 512;

}

table dmac {  
reads {

ethernet.dstAddr : exact;
}
actions {  

forward;  
broadcast;

}
size : 512;

}

table mcast_src_pruning {  
reads {

standard_metadata.instance_type : exact;
}
actions {_  

nop;  
drop;

}
size : 1;

}

control ingress {  
apply(smac);  
apply(dmac);

}

control egress {  
(if(standard_metadata.ingress_port ==

standard_metadata.egress_port) {  
apply(mcast_src_pruning);

}
}

Example:

Ethernet Switch
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