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Model Misspecification and Main Idea

Overwhelming evidence that most, if not all, economic models are
misspecified.
We adopt the view that dispenses completely with the notion of a
true model and treats the candidate models as genuinely misspecified:

1 because they approximate or represent different aspects of latent DGP;
2 or because the underlying structure is completely unknown.

Misspecified models can still be useful for informing policy makers and
investors in their decision making...but one needs to proceed carefully

1 Perform a model selection procedure (“least misspecified”model)
statistical inference (on the pseudo-true values of the model) needs to
adequately incorporate model uncertainty

2 Combine information from all models by model aggregation to elicit
some features of the latent object of interest

the statistical paradigm is shifted away from parameter estimation of
an optimally selected model
interest lies in some unknown functional (conditional mean, forecast
density, stochastic discount factor etc.)
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Motivation and Context

Accounting for model uncertainty:
Model m = (S ,γ) ∈ M, where S is the model structure (functional
form, distributional assumptions, heteroskedasticity, time dependence)
and γ are parameters specific to the model structure S .
There is both parameter and model uncertainty.
What must be done is integrating over both S and γ

p(y |x ,M)=
∫
M
p(y |x ,m)p(m|x)dm=

∫ ∫
p(y |x ,S ,γ)p(S ,γ|x)dSdγ.

Instead, we often condition on a specific model structure S∗

p(y |x ,M) = p(y |x , S∗) =
∫ ∫

p(y |x , S∗,γ∗)p(γ|x , S∗)dγ

ignoring model uncertainty.

Model averaging is a way of dealing with model uncertainty. But most
model averaging methods assume thatM contains the true model.
We are usually interested in some functional f given the data. But for
model averaging to make sense, f needs to be the same for all models.
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Entropy-Based Aggregation

Information-theoretic approach to aggregation:
adapts better to the underlying uncertainty surrounding DGP.

M proposed misspecified models {f1, ..., fM}; f̃ is the aggregator.
each model is an incomplete ‘indicator’of the latent object of interest.

Consider the flat simplex WM =
{
w ∈ RM : wi ≥ 0,∑M

i=1 wi = 1
}
.

The empirical risk function RT ,ρ(f̃ , fi ) is the generalized entropy
divergence between the aggregator f̃ and each prospective models fi :

RT ,ρ(f̃ , fi ) =
1

ρ(ρ+ 1)

T

∑
t=1
f̃t

[(
f̃t
fi ,t

)ρ

− 1
]
.

The aggregator that minimizes ∑M
i=1 wiRT ,ρ(f̃ , fi ), w ∈ W

M , is

f̃ ∗t ∝
[
∑M
i=1 wi f

−ρ
i ,t

]−1/ρ
.

linear (ρ = −1), geometric (ρ→ 0) and Hellinger (ρ = −1/2) pooling
are special cases.
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Example: Forecasting U.S. Core Inflation

Monthly data for 1988:01—2018:02.
12-month forecasts of U.S. core (CPI less food and energy) inflation.
Models:

BC: Blue Chip survey of expected CPI inflation
PC: Phillips curve model
HA: Historical average
MA: IMA(1,1) model (Stock and Watson, 2007)
CY: Simplified commodity-based (convenience yield) model
(Gospodinov and Ng, 2013; Gospodinov, 2017)
AG: Hellinger distance (ρ = −1/2) aggregator of PC, HA, MA and CY
(BC is used as pivot)

Recursive model estimation (initial sample 1988:01—1996:12)
Aggregation weights are estimated by minimizing the Hellinger
distance between the aggregator and pivot densities over a training
sample (initial sample 1997:01—2001:12).
Out-of-sample evaluation: 2002:01-2018:02.
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Example: Forecasting U.S. Core Inflation

Bregman loss functions (Patton, 2017) for different forecasting models

PC HA MA BC CY AG
Homogeneous Bregman Loss (k > 1)
k = 1.1 2.4408 2.0272 2.2855 1.7521 1.4074 1.0000
k = 2 (MSE) 1.9695 2.051 2.0913 1.7726 1.5628 1.0000
k = 3 1.7382 2.0339 1.8989 1.7948 1.7676 1.0000
k = 3.5 1.6745 2.0101 1.8125 1.8065 1.8835 1.0000
k = 4 1.6297 1.9781 1.7323 1.8188 2.0092 1.0000
Non-homogeneous (exponential) Bregman Loss (a 6= 0)
a = −1 2.6709 2.0111 2.4709 1.7349 1.2609 1.0000
a = −0.5 2.2476 2.0495 2.2796 1.7528 1.3907 1.0000
a→ 0 (MSE) 1.9695 2.0515 2.0913 1.7726 1.5628 1.0000
a = 0.5 1.7912 2.0157 1.9117 1.7959 1.7875 1.0000
a = 1 1.6796 1.9434 1.7433 1.8235 2.0788 1.0000

All losses are expressed as ratios to that of the aggregator (AG) model.
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Example: Forecasting U.S. Core Inflation

Dominance of forecast aggregation across ALL loss functions
the forecast improvements are quite large
improvements are largest when over-predictions are penalized more
heavily than under-predictions
unbiased forecast: Mincer-Zarnowitz regression (intercept=-0.0192,
slope=0.9221)

For the individual models, BC and CY work best except when
over-predictions are very costly.
Largest weights are assigned to the CY model.
Interesting dynamics of forecast weights over time.
Some evidence against perfect substitutability of candidate models,
which is implicitly embedded in the linear pooling (ρ = −1).
The aggregator can be adapted to some other model instead of BC
(we prefer BC because it’s model-free).
“Intercept corrections”à la Klein/Theil lead to further improvements.
Reminder: forecasting core inflation is really challenging.
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Example: Forecasting U.S. Core Inflation
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Oracle Inequalities and Bounds

Model aggregation as a stochastic optimization approach.
Let functional f (·) be the unknown object to be inferred.
Suppose that a finite list (dictionary) F of candidate auxiliary models
is available.
Stochastic optimization minimizes an empirical risk function that
satisfies oracle inequalities (Rigollet, 2012; Rigollet and Tsybakov,
2012).

model aggregation with aggregation weights obtained from the
stochastic optimization problem;
model selection assigns weights of one or zero to individual models: it
proves to be suboptimal.

Let Z1, ...,ZT denote observations of the random variable Z with an
unknown distribution.
Let L : Z ×F →R be a measurable loss function with a
corresponding risk function R : F →R defined as

R(f ) = E[L(Z , f )], f ∈ F .
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Oracle Inequalities and Bounds

The oracle f ∗ is defined as f ∗ = inf f ∈F R(f ).
“oracle”because it cannot be constructed without knowledge of the
true functional.

The goal is to construct an aggregator f̃ of f1, ..., fM in the F
dictionary by mimicking the oracle inf f ∈F R(f ).
Oracle bound (in expectation): there exists a constant C ≥ 1 such
that

E[R(f̃ )] ≤ C inf
f ∈F
R(f ) +4T ,M (F )

the remainder term 4T ,M (F ) > 0 characterizes the performance of
the aggregator: explicit function of M and sample size T ;
the goal is to find an optimal (smallest possible) 4T ,M (F ): a diffi cult
problem especially with dependent data and general functional forms;
if the model is misspecified, inff ∈F R(f ) > 0;
it is therefore desirable to obtain a bound with a leading constant
C = 1 (sharp inequality);
again, this is a challenging task.
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Entropy-Based Aggregators

Let P and Q be probability measures with densities p and q with
respect to a dominating measure ν.
Generalized entropy divergence from Q to P is given by

Dη(P,Q) =
∫

φη (dQ/dP) dQ,

where φη(x) =
1

η(η+1)

(
xη+1 − 1

)
is the Cressie-Read family, or

Dη(P,Q) =
∫ (

1− (p/q)η) qdν for η ∈ R.

when η → 0, we obtain the Kullback-Leibler divergence measure

D0(P,Q) =
∫
ln (p/q) qdν = KL(P,Q).

the case η = −1/2 corresponds to the Hellinger distance measure (the
only proper measure of distance in the class)

D−1/2(P,Q) =
∫ (

p1/2 − q1/2
)2
dν = H(P,Q).
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Hellinger-Distance Aggregator

Let

f̃ (w ) =
[
∑M
i=1 wi f

1/2
i

]2
be the aggregator based on the Hellinger

distance with f̃ (w )T being its sample analog;
H(f̃ (w ), f ) be the risk function based on the Hellinger distance.

Then (see also Birgé, 2006, 2013),

E[HT (f̃ (w )T , f )] ≤ C
[
min
w∈WM

H(f̃ (w ), f ) +4T ,M
]
,

where C ≥ 1 and 4T ,M is a remainder term.
Moreover, the minmax risk over F is bounded by C4T ,M .
Note that H(f̃ (w ), f ) > 0 under model misspecification.
But with Hellinger distance and minmaxity, the risk remains under
control even if the models are misspecified.

Kitamura, Otsu, and Evdokimov (2013); Antoine and Dovonon (2017)
for the robustness properties of the Hellinger distance.
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HJ-Distance

Let mt represent an admissible SDF at time t and letM be the set
of all admissible SDFs.
An SDF mt is admissible if it prices the test assets correctly, i.e.,

E[Rtmt ] = 1N .

Suppose that yt (γ) is a candidate SDF at time t that depends on the
vector of unknown parameters γ ∈ Γ

linear SDF yt (γ) = x ′tγ, where xt are K (K < N) risk factors.

Model is correctly specified if ∃ a γ ∈ Γ such that yt (γ) ∈ M.
Model is misspecified if yt (γ) 6∈ M for all γ ∈ Γ.
Hansen and Jagannathan (1991, 1997) suggested using

δ = min
γ∈Γ

min
mt∈M

(
E[(yt (γ)−mt )2]

) 1
2

as a misspecification measure for yt (γ).
We refer to δ as the Hansen-Jagannathan distance (HJD).
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HJ-Distance

To preview what’s coming, HJD can be interpreted as a quadratic risk
for stochastic optimization with misspecified models

Almeida and Garcia (2012) show that for a fixed vector of parameters
γ, the primal problem in the SDF framework can be written as

δη(γ) = min
m∈M

E

[
(1+m− y(γ))η+1

η(1+ η)

]
.

The primal problem for the HJD is obtained for η = 1. The normalized
Hellinger distance follows for η = −1/2.

HJD is “oracle” since mt is an unknown/unknowable latent object.
It is often more convenient to solve the following dual problem:

δ2 = min
γ∈Γ

max
λ∈<N

E[yt (γ)2 − (yt (γ)− λ′Rt )2 − 2λ′1N ],

where λ is an N-vector of Lagrange multipliers.
mt no longer plays a role!!!
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HJ-Distance

Let θ = [γ′ ,λ′]′ and θ∗ = [γ∗′ ,λ∗′]′ be defined as

θ∗ = argmin
γ∈Γ

max
λ∈<N

E[Lt (θ)],

where Lt (θ) ≡ yt (γ)2 − (yt (γ)− λ′Rt )2 − 2λ′1N .
By rearranging the dual problem, it is easy to show that

λ∗ = U−1e(γ∗),

where U = E[RtR ′t ] and e(γ
∗) = E[Rtyt (γ∗)− 1N ], and

δ2 = e(γ∗)′U−1e(γ∗).

Then, the estimator θ̂ = [γ̂′, λ̂
′
]′ can be obtained sequentially as

γ̂ = argmin
γ∈Γ

eT (γ)
′U−1T eT (γ),

and λ̂ = Û−1eT (γ̂), where UT is the sample analog of U.

a non-optimal GMM estimator with a fixed weighting matrix U−1T .
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Consumption-Based Models and SDF Aggregation

Dictionary of SDF models:
CAPM (Brown and Gibbons, 1985)
Consumption CAPM
Non-expected utility model (Epstein and Zin, 1989, 1991; Weil, 1989)
Durable consumption CAPM (Yogo, 2006)
External habit model (Abel, 1990)

Auxiliary models are misspecified, but economic theory still provides
guidance to mimicking the oracle SDF.
The primal problem targets unknown functional of interest, but is
transformed to the dual.

The immutable part of risk drops out.

Our aggregation method is information nesting.
Data dependent model weights, wi , will rank competing models.
An alternative is a data-driven (model-free) approach to
approximating the unknown function using non-parametric methods.

This is better suited to a ‘machine learning’approach.
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Evidence of Misspecification: Asset Pricing Models

HJ-distance estimation of SDF models (t-stats and p-vals)
Model market cgt cdt cgt−1 smbt hmlt Spec .Test
CAPM 2.70

[2.35]
0.00

CCAPM −1.41
[−1.29]

0.00

Epstein-Zin 3.31
[2.76]

−2.14
[−2.08]

0.00

D-CCAPM 3.14
[2.60]

−1.94
[−1.84]

−0.79
[−0.79]

0.00

External habit −1.81
[−1.57]

−1.14
[−1.14]

0.00

Fama-French 1.92
[1.66]

−2.29
[−1.92]

−2.70
[−2.48]

0.00

Notes: Test assets: 25 Fama-French + 17 industry portfolios. Sample period:
1959:02 - 2012:12. Rank test is testing the null of a reduced rank of D.
Misspecification-robust t-stats in square brackets.

All models are rejected!

Still, it is common practice to use GMM standard errors for correctly
specified models even when the model is rejected by the data.
Allowing for model uncertainty reduces the statistical significance
(especially for non-traded factors).
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SDF Aggregation: Some Specifics

M proposed misspecified models, ŷi ,t = yi ,t (γ̂i ), i = 1, ...,M, for the
unknowable true SDF m.

The estimates γ̂i of the pseudo-true values γ∗i are obtained from a
prior training sample of size N by minimizing the HJD for each model.

The effective number of sample observations is N + T

candidate models are estimated using observations 1, ...,N
aggregation weights are estimated using observations N + 1, ...,N + T .

Then, a model averaging rule would aggregate information from all of
these models and construct a pseudo-true SDF ỹ .

We are interested in finding the aggregator ỹt with a distribution that
is as close as possible to the distributions of ŷi’s.

The risk of the aggregator ỹt has an oracle component relative to m.
This is common to all empirical decisions.

All decisions are “stochastically optimizing” (empirical) risk of ỹt .
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SDF Aggregation: Some Specifics

Parameters for model i are estimated over the training sample
(t = 1, ...,N) as

γ̂i = argmin
γi∈Γ

eT (γi )
′
(
1
N ∑N

t=1 RtR
′
t

)−1
eT (γi ),

where eT (γi ) denotes the sample pricing errors of model i .
The SDFs ŷi ,t = yi ,t (γ̂i ), i = 1, ...,M, are constructed by plugging in
the estimated parameters but using data for the second part of the
sample N + 1, ...,N + T .
Recall that the aggregator that minimizes GE risk takes the form

ỹt ∝
[
∑M
i=1 wiy

−ρ
i ,t

]−1/ρ

under quadratic risk (ρ = −1), we obtain linear pooling.
under Hellinger-distance risk (ρ = −1/2), ỹt ∝

[
∑M
i=1 wi y

1/2
i ,t

]2
.

Two methods for estimating w .
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SDF Aggregation: Some Specifics

Method 1: HJ-distance approach.
For given (ŷ1,t , ..., ŷM ,t )′, construct the pricing errors of the
aggregator

ẽT (w) =
1
T ∑N+T

t=N+1 Rt
[
∑M
i=1 wi ŷi ,t

]
− 1N .

The unknown weights w are obtained by minimizing the HJ-distance
of ẽT (θ)

δ̃ =

√
ẽT (w)′

(
1
T ∑N+T

t=N+1 RtR
′
t

)−1
ẽT (w),

subject to wi ≥ 0 and ∑M
i=1 wi = 1.
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SDF Aggregation: Some Specifics

Method 2: minimizing the Hellinger distance (consistent risk
function).

Let p be the density of some favored benchmark model (“pivot”), and

q the density of the aggregator ỹt (θ) =
[
∑M
i=1 wiy

1/2
i ,t

]2
.

Minimize the Hellinger distance (with respect to w)

H = 1
2

∫ (
p1/2(x)− q1/2(x)

)2
dx ,

subject to wi ≥ 0 and ∑M
i=1 wi = 1.

Starting values for weights are the inverse of the Hansen-Jagannathan
distances, i.e., ŵi = (1/δ̂i )/ ∑M

i=1(1/δ̂i ) for i = 1, ...,M.

Densities p and q are estimated by a kernel density estimator and the
integral in H is evaluated numerically.

The choice of a benchmark model: Fama-French 3-factor model.
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Simulations

Factors and returns are simulated from a multivariate normal
distribution with parameters calibrated to the data.
Sample size is N + T = 600 with N = 360 and T = 240.
Two scenarios: (i) all models are misspecified and (ii) CAPM is
“true”but all other models are misspecified.
Two sets of test asset returns: (i) the 25 Fama-French portfolios, and
(ii) the 17 industry portfolios.
Models for aggregation: CAPM, CCAPM, EZ and D-CCAPM.
Benchmark model: FF3.
Aggregators: HJ distance and Hellinger distance.
Evaluation metric for pricing performance: HJ distance.
HJD aggregator is expected to work the best: But how does it
compare to individual models?
HEL aggregator is expected to show robustness: But how does it
assign weights compared to HJD aggregator?
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Simulations: All Models are Misspecified

CAPM CCAPM EZ D-CCAPM FF3 HJD agg. HEL agg.

25 Fama-French portfolios
mean δ̂ 0.4713 0.4831 0.4780 0.4834 0.4533 0.4577 0.4708
median δ̂ 0.4683 0.4786 0.4737 0.4794 0.4501 0.4545 0.4680
mean ŵ−1 0.3512 0.1775 0.1422 0.3291
mean ŵ−1/2 0.1766 0.1420 0.2586 0.4228

17 industry portfolios
mean δ̂ 0.3000 0.3036 0.3101 0.3213 0.3081 0.2908 0.3010
median δ̂ 0.2985 0.3008 0.3070 0.3162 0.3077 0.2889 0.3013
mean ŵ−1 0.4047 0.3347 0.1030 0.1575
mean ŵ−1/2 0.3230 0.2174 0.1718 0.2878

SDF aggregation offers a substantial improvement in pricing
performance.
HJD aggregator dominates uniformly the individual models used for
aggregation.
HEL aggregator appears to robustify away from the best performing
individual model and distribute weights more evenly across models.
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Simulations: CAPM is Correctly Specified

CAPM CCAPM EZ D-CCAPM FF3 HJD agg. HEL agg.

25 Fama-French portfolios
mean δ̂ 0.3370 0.3490 0.3433 0.3507 0.3459 0.3286 0.3387
median δ̂ 0.3339 0.3477 0.3426 0.3498 0.3414 0.3262 0.3369
mean ŵ−1 0.4344 0.2353 0.1523 0.1781
mean ŵ−1/2 0.3360 0.1402 0.2218 0.3020

17 industry portfolios
mean δ̂ 0.2657 0.2680 0.2744 0.2833 0.2770 0.2563 0.2666
median δ̂ 0.2633 0.2654 0.2696 0.2784 0.2746 0.2548 0.2644
mean ŵ−1 0.4003 0.3490 0.0908 0.1599
mean ŵ−1/2 0.3241 0.2010 0.1983 0.2766

Even when one of the models is true, HJD aggregation dominates.
Somewhat surprising that aggregation weights are still fairly equally
distributed over competing models.

partly due to the fact that CAPM is nested within other models.
it also illustrates the “insurance”value of mixing by penalizing the
possibility of choosing catastrophically false individual models.
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Concluding Remarks

Economic models are misspecified by design as they try to
approximate a complex/unknown/unknowable DGP.

Instead of selecting a single model for policy analysis or decision
making, aggregating information from all models may adapt better to
the underlying uncertainty and result in a more robust approximation.

Information theory provides the natural theoretical foundation for
dealing with these types of uncertainty and partial specification.

We capitalize on some insights from the information-theoretic
approach and propose a mixture method for aggregating information
from different misspecified asset pricing models.

The generalized entropy criterion that underlies our approach allows
us to circumvent some drawbacks of the standard linear pooling.

Potentially wide applicability in (micro, macro, labor) economics
using a large set of diverse, partially specified models.
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