Survey on Total Factor Productivity: Evidence from Iran

Kowsar Yousefi¹

¹Institute for Management and Planning Studies

International Trade Summer School Khatam University, 2017

<ロト < 団ト < 団ト < 団ト

Motivation

2 Data• Data

- TFP over Time
- Dust and Sand

æ

イロト イヨト イヨト イヨト

Motivation Motivation

DataData

• Dust and Sand

æ

イロト イヨト イヨト イヨト

Motivation

Figure: Growth rates of aggregate production, labor and capital

- Iran's industry encounters growth issues over the last years
- productivity(tfp) is ... level of our ignorance
- need to know its determinants
- previous studies needs to be updated

Kowsar Yousefi (IMPS)

• Qualitative Research

- changes of TFP over time, trends and components (today, joint with Professor Salehi Esfahani)
- missing middle? (Rahmati, Pilevari, 2017; Tybout, 2000; Banerjee and Duflo, 2005, 2011; McKinsey, 2001)

Policy Evaluation

- impact of weather quality (today, joint with Malihe Birjandi)
- impact of entry into export market (Yousefi, Sobhani, Madanizadeh, 2017)
- impact of trade liberalization on productivity (Heidari, Madanizadeh, Yousefi, 2017)

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

2 Data• Data

• Dust and Sand

Kowsar Yousefi (IMPS)

イロト イヨト イヨト イヨト

æ

- Panel of industrial plants, 2003 to 2013
- more than 32000 distinct plant, more than 161000 observations
- data is collected yearly by CSI, surveyed if labor > 50; surveyed if 10 < labor < 50

▶ < ∃ ▶

Kowsar Yousefi (IMPS)

æ

イロト イヨト イヨト イヨト

• Nili et al (2012) report negative trend (pp. 29 & 233)

- using pooled cross sectional data, 1998 to 2005
- results show decreasing aggregate tfp in all sectors, except for textile, garment, food, leather;
- they assume non-competitive market structure
- Rahmati & Pilevari (2017) : negative trend for average TFP and aggregate TFP
 - panel of 91,088 observations (23,144 firms), 2005-2011
 - calculating tfp using Levinsohn-Petrin method
 - simple average of tfp is reported as the average tfp
 - tfp of a representative firm is reported as aggregate tfp

▲圖▶ ▲屋▶ ▲屋▶

Figure: Negative Trend in Average TFP and Aggregate TFP; by Rahmati & Pilevari, 2017

э

- 1- Data Cleaning
 - impute if missing capital or output
 - exclude duplicates (zarib=0, labor=0) and exiters
- 2- Calculate TFP for each firm, using method of Levinsohn-Petrin (2003)
 - we use gross output; mainly because many observations with negative value added
- 3- Calculate *aggregate* TFP for the industry and *decompose* it into components
 - following aggregation method used by Olley and Pakes (1996), Levinsohn and Petrin (2005; 2012), Polanec and Melitz (2012)

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

• Assume a Cobb-Douglas production function

$$y_t = \beta_0 + \beta_I I_t + \beta_k k_t + \beta_m m_t + \omega_t + \eta_t$$

- ω is a state variable, observed by manager, unobservant by econometrician
- Simultaneity problem: ω is correlated with inputs
- Solution: take material a proxy to identify ω
 - Levinsohn and Petrin, 2003
 - Olleyad and Pakes, 1996

・何ト ・ヨト ・ヨト

Distribution of tfp and size

Figure: productivity vs. size is U shaped, 2013

Kowsar Yousefi (IMPS)

Histogram of TFP

Figure: Hisotgram of TFP in 2013, no evidence of missing middle

Kowsar Yousefi (IMPS)

<ロ> <四> <四> <四> <三</td>

Aggregate TFP

- Aggregate productivity is measured as the weighted summation of individual tfp: $\Sigma s_{it} \phi_{it}$
 - s is market share
 - $\boldsymbol{\phi}$ is a measure of productivity

3 K K 3 K

What is the Share of Small and Large firms?

- Interested to obtain the impact of exit and entry
- However, the data is sampled for *labor* < 10 and exits are not identified from sampling
- Among large firms, entry and exit are observable
- Let's first look into the share of large firms out of aggregate productivity:

$$\begin{split} \Phi &= \sum s_{it} \phi_{it} \\ &= \sum_{i \in small} s_{it} \phi_{it} + \sum_{i \in large} s_{it} \phi_{it} \\ &= mktshr_{small} \times \sum_{small} \frac{s_{it}}{mktshr_{small}} \phi_{it} \\ &+ mktshr_{large} \times \sum_{large} \frac{s_{it}}{mktshr_{large}} \phi_{it} \\ &= mktshr_{small} \times \Phi_{small} + mktshr_{large} \times \Phi_{large} \end{split}$$

Share of Larges and Smalls...

Figure: Share of large and small firms in aggregate TFP

Kowsar Yousefi (IMPS)

(日) (周) (三) (三)

Share of Larges and Smalls...

Figure: Share of large and small firms in aggregate labor market productivity

(日) (周) (三) (三)

Exit and Entry

- Usually, entrants are high productive firms, exitings are low productive firms
- Do entry and exit makes a downward bias in measuring aggregate TFP?
- Melitz and Polanec (RAND, 2015) decompose aggregate productivity to three parts:

$$\Phi_1 = s_{51}\Phi_{51} + s_{X1}\Phi_{X1} = \Phi_{51} + s_{X1}(\Phi_{X1} - \Phi_{51})$$

$$\Phi_2 = s_{52}\Phi_{52} + s_{E2}\Phi_{E2} = \Phi_{52} + s_{E2}(\Phi_{E2} - \Phi_{52})$$

$$\Delta \Phi = (\Phi_{S2} - \Phi_{S1}) + s_{E2}(\Phi_{E2} - \Phi_{S2}) + s_{X2}(\Phi_{X1} - \Phi_{S1})$$

- Entrants adds to the aggregate ΔΦ (if high productive)
- Exiters lower aggregate $\Delta \Phi$ (if low productive)

Kowsar Yousefi (IMPS)

< 注 → < 注 → □ 注

Figure: Share of entry and exit in aggregate productivity, labor> 50

Table: Aggregate Productivity Change Relative to $\Phi_{\textit{S},2004},$ labor;50

	ΔTFP			Δ labor Productivity			
	Survivors	Entrants	Exitings	Survivors	Entrants	Exitings	
2010	-0.44	-0.04	0.30	0.26	-0.18	0.08	
2011	1.46	0.28	0.34	-0.21	-0.11	0.11	
2012	-1.06	-0.03	0.30	-0.60	-0.09	0.07	
2013	3.08	-0.41	0.38	1.63	-0.50	0.05	

- Compared to incumbents, exiters are low productive both in terms of TFP and $\frac{Y}{L}$
- Entrants' Phi is usually worse than incumbents
- There is sharp decline in $\Delta \Phi$ and $\Delta \frac{Y}{L}$ in 2012 (sanctions)

★@> ★ E> ★ E> = E

æ

イロト イヨト イヨト イヨト

- Does productivity affected by dust and sand?
- The effect on productivity is not explored in the literature
- The right-hand-side variable of interest (weather condition) is completely exogenous
 - remind that endogeneity is a big issue in policy evaluations
- We use Irans' recent weather quality change

- Weather data is from the National Centers for Environmental Information
 - original data is on hourly basis
 - aggregated to yearly, province, county level
 - different codes are reported; we are interested in aerosoles
 - code 6: non-local dust
 - code 7: locally raised dust
- Merged with industrial plants
- observations: 88,346.
- years: 2001-2011

- 4 目 ト - 4 日 ト - 4 日 ト

How firms are distributed?

Figure: Distribution of # of plants over the county

 Size of circles is proportional to number of plants in each county, for which there exist a land-based weather station

Kowsar Yousefi (IMPS)

How non-local dust is documented?

Figure: The pattern of # of days for which non local dust is reported is changing from 2001 to 2011

Model

- The coefficients of dust (α & β) show the impact of aerosoles on productivity.
- OLS model:

 $ln(productivity_{it}) = \alpha \ dust_{ct} + i.year_t + i.isic_i + i.province_c + \varepsilon_{it}$

• Fixed Effect model:

 $ln(productivity_{it}) = \beta \ dust_{ct} + i.year_t + i.isic_i + f_i + \varepsilon_{it}$

- productivity:
 - 1. TFP calculated by Levinsohn-Petrin method
 - 2. Labor productivity
- i: firm
- c: county

イロト イ団ト イヨト イヨト 三日

	OLS		FE	
	In(labor	ln(TFP)	In(Labor	In(TFP)
	productivity)	LP	Productivity)	LP
Non-local	-0.0029	-0.0014	-0.00081	-0.00043
dust	(2.8)***	(3.1)***	(2.7)***	(1.9)*
Observations R-squared # of firms	88,337 0.12	88,425 0.03	88,337 0.01 17,192	88,425 0.003 17,192

- Labor is included, robust S.E. is reported
- In OLS regressions:
 - sampling weights imposed
 - Distinct dummies for industry, year and province are included
 - S.Es are clustered in each isic-2dgts

・ロト ・聞 ト ・ ヨト ・ ヨト …

Results: Locally Raised Dust

	OLS		FE	
	In(labor	ln(TFP)	In(Labor	In(TFP)
	productivity)	LP	Productivity)	LP
Locally raised	-0.0023	-0.0005	-0.0007	0.00004
dust	-1.43	-0.83	-1.62	-0.12
Observations R-squared # of firms	88,337 0.11	88,425 0.01	88,337 0.01 17,192	88,425 0.003 17,192

- Labor is included, robust S.E. is reported
- In OLS regressions:
 - sampling weights imposed
 - Distinct dummies for industry, year and province are included
 - S.Es are clustered in each isic-2dgts

・ロト ・聞ト ・ヨト ・ヨト

• We are able to measure the impact of aerosoles in windy areas

$$\begin{aligned} & \textit{In}(\textit{productivity}_{it}) = \alpha \; \textit{dust}_{ct} + \beta \; \textit{wind}_{ct} \\ & + \gamma \; \textit{wind}_{ct} \times \textit{dust}_{ct} + i.\textit{year}_t + i.\textit{isic}_i + i.\textit{province}_c + \varepsilon_{it} \end{aligned}$$

イロト イ団ト イヨト イヨト 三日

Results for Windy Areas

	OLS		FE	
	In(labor	In(TFP)	In(Labor	In(TFP)
	productivity)	LP	Productivity)	LP
Non-local	-0.007	-0.002	0.0002	-0.0007
dust	(1.9)*	-1.2	-0.2	-1.1
$wind \times dust$	0.0008	0.0002	-0.0001	0.00007
	-1.4	-0.7	-1.2	-0.6
wind speed	-0.01	-0.002	0.006	0.01
•	-1.1	-0.3	-1.3	(2.6)***
labor	0.0003	0.00008	-0.0002	-0.00003
	(2.9)***	(3.2)***	(3.1)***	-0.7
Observations	87905	87993	87905	87993
R-squared	0.1175	0.0322	0.0119	0.0037

Kowsar Yousefi (IMPS)

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

• Aerosol, or dust, causes a significant reduction in productivity

- Non-local dusts ranges from 0 to 161, median 6, average 17.
- Each 1 unit more dust causes 0.2% less labor productivity
- Average labor productivity is $8 * 10^8$
- Labor productivity decreases by $0.002 * 8 * 10^8$ which is 1600000.
- Each labor's production reduces by 160,000.
- Production of an average firm (with 77 labor) reduces by 12,000,000 per year.
- Wind decreases the impact of aerosoles
- However, the negative effect doesn't disappear
 - average wind speed is 6
 - effect of aerosol remains negative: -0.007 + 0.0048 < 0

- 4 同 6 4 日 6 4 日 6