
Mechanics of Bitcoin

Amin Sadeghi

Bitcoin Mining

Mining Bitcoins in 6 easy steps

1.Join the network, listen for transactions
a.Validate all proposed transactions

2.Listen for new blocks, maintain block chain
a.When a new block is proposed, validate it

3.Assemble a new valid block
4.Find the nonce to make your block valid
5.Hope everybody accepts your new block
6.Profit!

Useful

to

Bitcoin

networ

k
Incentivi

ze

miners

to do

above

Mining difficulty “target” end of 2017

00000000000000000a955000

256 bit hash output

64+ leading zeroes required

Current difficulty = 268 =84,758,978,290,086,040,000

Hash of any valid block should be less than the following:

Less than 1 in about 268 nonces will work

Setting the mining difficulty

next_difficulty= previous_difficulty *

(2 weeks)/(time to mine last 2016 blocks)

Every two weeks (or approx. 2,016 blocks), compute:

Expected number of blocks in 2 weeks at 10

minutes/block

Mining difficulty over time

bitcoinwisdom.com

Time to find a block

bitcoinwisdom.com

10 minutes

2 weeks

Mining hardware

SHA-256

• General purpose hash function
• Part of SHA-2 family: SHA-224,SHA-384,SHA-512

• Published in 2001
• Designed by the NSA
• Remains unbroken cryptographically

• Weaknesses known
• SHA-3 (replacement) under standardization

SHA-256 in more depth

Addition mod
32

256-bit state

x64

iteratio

ns

round

constan

ts

Bitwise
tweaks

CPU mining
TARGET = (65535 << 208)/DIFFICULTY;

coinbase_nonce = 0;

while (1){

header = makeBlockHeader(transactions, coinbase_nonce);

for (header_nonce=0;header_nonce < (1<<32);header_nonce++){

if (SHA256(SHA256(makeBlock(header,header_nonce))) <

TARGET)

break; //block found!

}

coinbase_nonce++;

}
two hashes

≈ 139,461 years to find a block today!

Throughput on a high-end PC ≈ 20 million hashes/sec

GPU mining

• GPUs designed for high-performance graphics
• High parallelism
• High throughput

• First used for Bitcoin mining in October 2010
• Implemented in OpenCL

• OpenCL: General purpose high level language for implementing non-
graphic applications on GPUs

Source:
LeonardH,
cryptocurren
ciestalk.com

FPGA mining

• Field Programmable Gate Area
• First used for Bitcoin mining approx. June 2011
• Implemented in Verilog

Bob Buskirk, thinkcomputers.org

Bitcoin Application-specific Integrated
Circuits (ASICs)

Professional mining centers

Needs:
• Cheap power
• Good network
• Cool climate

• (Georgia and
Iceland are
popular
destinations for
bitcoin mining)

BitFury mining center, Republic of

Georgia

Evolution of mining

CPU GPU FPGA ASIC

Gold pan Sluice box Placer mining Pit mining

Energy consumption & ecology

Energy aspects of Bitcoin mining

• Embodied energy: used to manufacture mining chips & other
equipment
• Should decrease over time
• Returns to scale

• Electricity: used to perform computation
• Should increase over time
• Returns to scale

• Cooling: required to protect equipment
• Costs more with increased scale!

Is Bitcoin mining wasteful?

• All payment systems require energy!

• Although, it may be nice to have a currency with a less
energy-intensive puzzle, but the same level of security!

Data furnaces

• Observation: in the limit, computing devices produce heat
almost as well as electric heaters!

• Why not install mining rigs as home heaters?
• Challenges:

• Ownership/maintenance model
• Gas heaters still at least 10x more efficient
• What happens in summer?

Open questions

• Will Bitcoin drive out electricity subsidies?

• Will Bitcoin require guarding power outlets?

• Can we make a currency with no proof-of-work?

Stay tuned for our lecture on alt-mining!

Mining pools

Economics of being a small miner

• Cost: ≈US$6,000
• Expected time to find a block:

≈14 months
• Expected revenue:

≈$1,000/month

TerraMiner IV

Mining uncertainty
P

ro
b

ab
ili

ty
 d

e
n

si
ty

14
months

Time to find first block

blocks found in
one year

probability (Poisson
dist.)

0 42.4%

1 36.4%

2 15.6%

3+ 5.6%

Mining pools
• Goal: pool participants all attempt to mine a block with the

same coinbase recipient
• Send money to key owned by pool manager

• Distribute revenues to members based on how much work
they have performed
• Minus a cut for pool manager

How do we know how much work members perform?

Mining shares

4AA087F0A52ED2093FA816E53B9B6317F9B8C1227A61F9481AFED67301F2E3FB

D3E51477DCAB108750A5BC9093F6510759CC880BB171A5B77FB4A34ACA27DEDD

00000000008534FF68B98935D090DF5669E3403BD16F1CDFD41CF17D6B474255

BB34ECA3DBB52EFF4B104EBBC0974841EF2F3A59EBBC4474A12F9F595EB81F4B

00000000002F891C1E232F687E41515637F7699EA0F462C2564233FE082BB0AF

0090488133779E7E98177AF1C765CF02D01AB4848DF555533B6C4CFCA201CBA1

460BEFA43B7083E502D36D9D08D64AFB99A100B3B80D4EA4F7B38E18174A0BFB

000000000000000078FB7E1F7E2E4854B8BC71412197EB1448911FA77BAE808A

652F374601D149AC47E01E7776138456181FA4F9D0EEDD8C4FDE3BEF6B1B7ECE

785526402143A291CFD60DA09CC80DD066BC723FD5FD20F9B50D614313529AF3

000000000041EE593434686000AF77F54CDE839A6CE30957B14EDEC10B15C9E5

9C20B06B01A0136F192BD48E0F372A4B9E6BA6ABC36F02FCED22FD9780026A8F

Idea: prove work with “near-valid blocks” (shares)

Mining pools (as of August 2014)

Are mining pools a good thing?
• Pros

• Make mining more predictable

• Allow small miners to participate

• More miners using updated validation software

• Cons

• Lead to centralization

• Discourage miners from running full nodes

Can we prevent pools?

Stay tuned for our lecture on alt-mining!

Mining incentives and strategies

Forking attacks

M→M’

M→B

M→M’

M→B

Forking attacks
• Certainly possible if α >0.5

• may be possible with less

• avoid block collisions

• Attack is detectable

• Might be reversed

• Might crash exchange rate

Goldfinger

Attack?

I expect you

to die, Mr.

Bitcoin

Forking attacks via bribery
• Idea: building α > 0.5 is expensive. Why not rent it instead?

• Payment techniques:

• Out-of-band bribery

• Run a mining pool at a loss

• Insert large “tips” in the block chain

This is an open problem!

Punitive forking
• Suppose you want to blacklist transactions from address X

• Freeze an individual’s money forever

• Extreme strategy: announce that you will refuse to mine
on any chain with a transaction from X

With α < 0.5, you’ll soon fall behind the network

Bitcoin Ledger

An account-based ledger (not Bitcoin)

Create 25 coins and credit to AliceASSERTED BY MINERS

Transfer 17 coins from Alice to BobSIGNED(Alice)

Transfer 8 coins from Bob to CarolSIGNED(Bob)

Transfer 5 coins from Carol to AliceSIGNED(Carol)

SIMPLIFICATION: only one transaction per block

time

Transfer 15 coins from Alice to DavidSIGNED(Alice)

might need to
scan backwards
until genesis!

is this valid?

A transaction-based ledger (Bitcoin)
Inputs: Ø

Outputs: 25.0→Alice No signature required

Inputs: 1[0]

Outputs: 17.0→Bob, 8.0→Alice
SIGNED(Alice)

SIMPLIFICATION: only one transaction per block

time

is this valid?

finite scan to
check for validityInputs: 2[0]

Outputs: 8.0→Carol, 7.0→Bob
SIGNED(Bob)

Inputs: 2[1]

Outputs: 6.0→David, 2.0→Alice
SIGNED(Alice)

we implement this
with hash pointers

change address

1

2

3

4

Merging value

Inputs: ...

Outputs: 17.0→Bob, 8.0→Alice
SIGNED(Alice)

SIMPLIFICATION: only one transaction per block

time

Inputs: 1[1]

Outputs: 6.0→Carol, 2.0→Bob
SIGNED(Alice)

Inputs: 1[0], 2[1]

Outputs: 19.0→Bob
SIGNED(Bob)

..

.

..

.

1

2

3

Joint payments

Inputs: ...

Outputs: 17.0→Bob, 8.0→Alice
SIGNED(Alice)

SIMPLIFICATION: only one transaction per block

time

Inputs: 1[1]

Outputs: 6.0→Carol, 2.0→Bob
SIGNED(Alice)

Inputs: 2[0], 2[1]

Outputs: 8.0→David
SIGNED(Carol), SIGNED(Bob)

..

.

..

.

two signatures!

1

2

3

The real deal: a Bitcoin transaction
{

"hash":"5a42590fbe0a90ee8e8747244d6c84f0db1a3a24e8f1b95b10c9e050990b8b6b",
"ver":1,
"vin_sz":2,
"vout_sz":1,
"lock_time":0,
"size":404,
"in":[

{
"prev_out":{

"hash":"3be4ac9728a0823cf5e2deb2e86fc0bd2aa503a91d307b42ba76117d79280260",
"n":0

},
"scriptSig":"30440..."

},
{
"prev_out":{

"hash":"7508e6ab259b4df0fd5147bab0c949d81473db4518f81afc5c3f52f91ff6b34e",
"n":0

},
"scriptSig":"3f3a4ce81...."

}
],
"out":[

{
"value":"10.12287097",
"scriptPubKey":"OP_DUP OP_HASH160 69e02e18b5705a05dd6b28ed517716c894b3d42e OP_EQUALVERIFY OP_CHECKSIG"

}
]

}

input(s)

metadata

output(s)

The real deal: transaction metadata
{

"hash":"5a42590...b8b6b",
"ver":1,
"vin_sz":2,
"vout_sz":1,
"lock_time":0,
"size":404,

...
}

housekeeping

housekeeping

transaction hash

“not valid before” more on this later...

also serves as a
unique ID

The real deal: transaction inputs

"in":[
{
"prev_out":{
"hash":"3be4...80260",
"n":0

},
"scriptSig":"30440....3f3a4ce81"
},

...
],

signature

previous
transaction

(more inputs)

The real deal: transaction outputs

"out":[
{
"value":"10.12287097",
"scriptPubKey":"OP_DUP OP_HASH160 69e...3d42e

OP_EQUALVERIFY OP_CHECKSIG"
},

...
]

output value

recipient
address??

(more outputs)

more on this soon...

Sum of all output values less than or equal to sum of all input values!
If sum of all output values less than sum of all input values, then difference

goes to miner as a transaction fee

Bitcoin scripts

Output “addresses” are really scripts

OP_DUP

OP_HASH160

69e02e18...

OP_EQUALVERIFY OP_CHECKSIG

Input “addresses” are also scripts

OP_DUP

OP_HASH160

69e02e18...

OP_EQUALVERIFY OP_CHECKSIG

30440220...

0467d2c9...
scriptSig

scriptPubKey

TO VERIFY: Concatenated script must execute completely with no errors

(from the redeeming transaction)

(from the transaction being redeemed)

Bitcoin scripting language (“Script”)

Design goals
• Built for Bitcoin (inspired by Forth)
• Simple, compact
• Support for cryptography
• Stack-based (linear)
• Limits on time/memory
• No looping

• Result: Bitcoin script is not Turing Complete!
i.e, cannot compute arbitrarily powerful
functions

• Advantage: No infinite looping problem!

image via Jessie St. Amand

I am not impressed

Bitcoin scripting language (“Script”)

•256 instructions (each represented by 1 byte)
• 75 reserved, 15 disabled
• Basic arithmetic, basic logic (“if” → “then”), throwing errors,

returning early, crypto instructions (hash computations,
signature verifications), etc.

•Only two possible outcomes of a Bitcoin script
• Executes successfully with no errors → transaction is valid OR
• Error while execution → transaction invalid and should not be

accepted in the block chain

Common script instructions

Name Functions

OP_DUP Duplicates top item on the stack

OP_HASH160 Hashes twice: first using SHA-256, then using RIPEMD-160

OP_EQUALVERIFY Returns true if inputs are equal, false (marks transaction invalid)
otherwise

OP_CHECKSIG Checks that the input signature is valid using input public key for
the hash of the current transaction

OP_CHECKMULTISIG Checks that t signatures on the transaction are valid from t (out
of n) of the specified public keys

Bitcoin script execution example

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

✓
<pubKey>

<pubKey>

<pubKeyHash?>

<pubKeyHash>

true

Applications of Bitcoin scripts

Example: Escrow transactions

PROBLEM: Alice wants to buy online from Bob.

Alice doesn’t want to pay until after Bob ships.

Bob doesn’t want to ship until after Alice pays.

Pay x to 2-of-3 of Alice, Bob, Judy (MULTISIG)
SIGNED(ALICE)

BobAlice

To: Alice
From: Bob

Pay x to Bob
SIGNED(ALICE, BOB)

(normal case)

Pay x to Alice
SIGNED(ALICE, JUDY)

(disputed case)

Judy

lock_time
{

"hash":"5a42590...b8b6b",
"ver":1,
"vin_sz":2,
"vout_sz":1,
"lock_time":315415,
"size":404,

...
}

Block index or real-world timestamp before
which this transaction can’t be published

Bitcoin blocks

Bitcoin blocks

Why bundle transactions together?
• Single unit of work for miners
• Limit length of hash-chain of blocks

• Faster to verify history

trans: H()

prev: H()

Bitcoin block structure

trans: H()

prev: H()

trans: H()

prev: H()

H() H()

H() H() H() H()

transaction transaction transaction transaction

Hash chain of blocks

Hash tree (Merkle tree) of
transactions in each block

The real deal: a Bitcoin block
{
"hash":"00000000000000001aad2...",
"ver":2,
"prev_block":"00000000000000003043...",
"time":1391279636,
"bits":419558700,
"nonce":459459841,
"mrkl_root":"89776...",
"n_tx":354,
"size":181520,
"tx":[

...
],
"mrkl_tree":[

"6bd5eb25...",
...
"89776cdb..."

]
}

transaction
data

block header

The real deal: a Bitcoin block header
{
"hash":"00000000000000001aad2...",
"ver":2,
"prev_block":"00000000000000003043...",
"time":1391279636,
"bits":419558700,
"nonce":459459841,
"mrkl_root":"89776...",
...

}

mining
puzzle
information

hashed
during
mining

not hashed

The real deal: coinbase transaction
"in":[

{
"prev_out":{

"hash":"000000.....0000000",
"n":4294967295

},
"coinbase":"..."
},
"out":[

{
"value":"25.03371419",
"scriptPubKey":"OPDUP OPHASH160 ... ”
}

arbitrary

redeeming
nothing

Null hash pointer

First ever coinbase parameter:
“The Times 03/Jan/2009 Chancellor

on brink of second bailout for banks”
block reward

transaction fees

See for yourself!

blockchain.info (and many other sites)

The Bitcoin network

Bitcoin P2P network

• Ad-hoc protocol (runs on TCP port 8333)
• Ad-hoc network with random topology
• All nodes are equal
• New nodes can join at any time
• Forget non-responding nodes after 3 hr

Joining the Bitcoin P2P network

1

6

4

7

3

5

2

8

Hello World! I’m
ready to Bitcoin!

getaddr

()

1, 7 getaddr

()

getaddr

()

Transaction propagation (flooding)

1

6

4

7

3

5

2

8

New tx!
A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

A→B

Already
heard that!

Should I relay a proposed transaction?

• Transaction valid with current block chain(default)
• Run script for each previous output being redeemed and

ensure that script returns true!
• Script matches a whitelist

• Avoid unusual scripts
• Haven’t seen before

• Avoid infinite loops
• Doesn’t conflict with others I’ve relayed

• Avoid double-spends

Sanity checks only...
Well-behaving nodes implement them!
Some nodes may ignore them!

Source: Yonatan Sompolinsky and Aviv Zohar: “Accelerating Bitcoin’s Transaction Processing” 2014

How big is the network?

• Impossible to measure exactly
• Estimates-up to 1M IP addresses/month
• Only about 5-10k “full nodes”

• Permanently connected
• Fully-validate

• This number may be dropping!

Fully-validating nodes

• Permanently connected
• Store entire block chain
• Hear and forward every node/transaction

Storage costs (in 2014)

20 GB

Storage costs (in 2018)

160 GB

Source: blockchain.info

Tracking the UTXO set

• Unspent Transaction Output
• Should be stored in memory - everything else can be

stored on disk, why?

65 M

Source: blockchain.info

Tracking the UTXO set

• Currently ~65 M UTXOs
• Out of 300 M transactions

• Can require several Gigabytes to store – can it fit in the RAM of a standard
computer?

300 M

Source: blockchain.info

Software diversity

• About 90% of nodes run “Core Bitcoin” (C++)

• Some are out of date versions

• Other implementations running successfully

• BitcoinJ (Java)

• Libbitcoin (C++)

• btcd (Go)

• “Original Satoshi client”

Limitations & Improvements

Hard-coded limits in Bitcoin

• 10 min. average creation time per block

• 1 M bytes in a block

• 20,000 signature operations per block

• 100 M satoshis per bitcoin

• 23M total bitcoins maximum

• 50,25,12.5... bitcoin mining reward

These affect
economic
balance of
power too
much to change
now

Throughput limits in Bitcoin

• 1 M bytes/block (10 min)

• >250 bytes/transaction

• 7 transactions/sec ☹

Compare to:

• VISA: 2,000-10,000 transactions/sec

• PayPal: 50-100 transaction/sec

Cryptographic limits in Bitcoin

• Only 1 signature algorithm (ECDSA/P256)

• Hard-coded hash functions

Crypto primitives might break by 2040...

Discussion

