Towards Network Systems that Improve with Experience

Mohammad Alizadeh

Network Control Systems

Congestion Control

Adaptive Video Streaming

Traffic Engineering

Internet Telephony

Cluster Scheduling

Two Paradigms in Network Control

Classical Paradigm (1960 – now) [Specify & Build]

- Specify operating environment
 & low-level design goals
- 2. Build one algorithm that achieves goals in (most) cases of interest

Learning Paradigm [Learn & Adapt]

- Learn operating environment
 & low-level goals
- Learn algorithms that can adapt to network/workload conditions

Two Paradigms in Network Control

Our Work on Learning-Based Network Systems

Users start leaving if video doesn't play in 2 seconds

Dynamic Streaming over HTTP (DASH)

Why is ABR Challenging?

Network throughput is variable & uncertain

Conflicting QoE goals

- Bitrate
- Rebuffering time
- Smoothness

Cascading effects of decisions

Our System: Pensieve

3. Tailors ABR decisions specifically for different network conditions. Pensieve learns ABR algorithms automatically through experience

Reinforcement Learning

Goal: maximize expected total future reward $\mathbb{E}\left[\sum_{t} r_{t}\right]$

Pensieve Training System

Large corpus of network traces

Video playback
Fast chunk-level simulator

Model update

cellular, broadband, synthetic

Our Work on Learning-Based Network Systems

Adaptive video streaming (Pensieve)

Scheduling Graph-Structured Workloads

Many systems encode jobs as directed acyclic graphs (DAGs)

• Data processing (e.g., Spark, Hadoop), ML training (e.g., TensorFlow), ...

Designing Optimal Schedulers is Intractable

A lot of considerations for optimal performance:

- Job dependency structure
- Degree of parallelism
- Scheduling order
- Locality
- •

No "one-size-fits-all" solution:

Best algorithm depends on specific workload and system

Decima: Technical Challenges

Challenge: Huge state and action space

→ Scalable Graph CNN to process any number of job DAGs

Challenge: Variance caused by stochastic job arrival process

→ Variance reduction technique for RL in input-driven systems

Decima Design

How to encode scheduling decisions as actions?

Option 1: Assign all Executors in 1 Action

Option 2: Assign 1 Executor per Action

Decima: Assign Groups of Executors per Action

Fair

Decima improves average job completion time by >2x over existing schedulers, and 19-31% over best hand-crafted heuristics

Our Work on Learning-Based Network Systems

Adaptive video streaming (Pensieve)

Cluster Scheduling (Decima)

RL Techniques

Input-Driven Environments

Dynamics driven by an exogenous stochastic input process

Input-Driven Environments

Dynamics driven by an exogenous stochastic input process

The input does not depend on the states and actions

Reinforcement Learning for Input-Driven MDPs

Must take the future input into account when evaluating actions

Input-Dependent Baseline

Score for action
$$a_t = \sum_{t'=t}^{T-1} r_{t'} - b(s_t)z_t, z_{t+1}, \dots$$

Expected return for trajectories from state s_t with input sequence z_t , z_{t+1} , ...

- Input-dependent baselines reduce variance without bias
- We use meta-learning to learn baseline efficiently

Walker2d with Wind

TRPO with standard baseline

TRPO with input-dependent baseline

Half-Cheetah on Floating Tiles

TRPO with standard baseline

TRPO with input-dependent baseline

7-DoF Arm Tracking Moving Object

TRPO with standard baseline

TRPO with input-dependent baseline

Summary

- Significant opportunity to build smarter networks that can adapt to workload and environment
- Network systems are an exciting domain for ML/AI;
 can lead to new techniques with broad applications
- Many challenges remain for learning-based systems
 - Safe training & exploration
 - Interpretability

— ...