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Network Control Systems

Traffic Engineering

Adaptive Video Streaming Internet Telephony

Congestion Control

…...

Cluster Scheduling
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Learning Paradigm

1. Learn operating environment     
& low-level goals

2. Learn algorithms that can adapt 
to network/workload conditions

Classical Paradigm (1960 – now)

1. Specify operating environment         
& low-level design goals

2. Build one algorithm that achieves 
goals in (most) cases of interest

[Specify & Build] [Learn & Adapt]

Two Paradigms in Network Control

3



Learning

Two Paradigms in Network Control

Universality

Optimality

Homogenous Heterogeneous
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Our Work on Learning-Based Network Systems
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Cluster Scheduling
(Decima)

Jobs Workers

RL Techniques

Adaptive video streaming
(Pensieve)
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https://gigaom.com/2012/11/09/online-viewers-start-leaving-if-video-doesnt-play-in-2-seconds-says-study/
Video: La Luna (Pixar 2011)

Users start leaving if video doesn’t play in 2 seconds
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Video Client Video Server

Request: 
next video chunk  at bitrate r

Response: 
video content

InputOutput

1 sec/sec
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Animation borrowed from Te-Yuan Huang (SIGCOMM ‘14) http://conferences.sigcomm.org/sigcomm/2014/doc/slides/38.pdf

bitrate
Adaptive Bitrate (ABR) 

Algorithms

1 sec 
video 

content

bitrate

Dynamic Streaming over HTTP (DASH)
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Throughput

Video bitrate

Network throughput 
is variable & uncertain

Conflicting QoE goals

• Bitrate

• Rebuffering time

• Smoothness

Cascading effects 
of decisions
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Why is ABR Challenging?
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buffer

ABR agent
bitrates

240P

480P

720P

1080P

network and video measurements

bandwidth

bit rate

720P

1. First network control system using modern deep reinforcement learning

2. 12-25% better QoE, with 10-30% less rebuffering than previous algorithms

3. Tailors ABR decisions specifically for different network conditions
Pensieve learns ABR algorithms automatically through experience

Our System: Pensieve
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Reinforcement Learning

Agent Environment
Take action

Observe state 

Reward

Goal: maximize expected total future reward 
10



Action 

Pensieve Design
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Pensieve Training System

{state, action, reward}
experiences

Policy gradient algorithm 
to update NN

Video playback
Fast chunk-level simulator

Pensieve
worker

Pensieve
worker

Pensieve
worker

Pensieve
master

Model update 
Large corpus of 
network traces

cellular, broadband, synthetic
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Our Work on Learning-Based Network Systems
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Cluster Scheduling
(Decima)

Jobs Workers

RL Techniques

Adaptive video streaming
(Pensieve)
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Scheduling Graph-Structured Workloads
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Job 2 Job 3

Scheduler

Executor 1

Executor m

Executor 2

Many systems encode jobs as directed acyclic graphs (DAGs)
• Data processing (e.g., Spark, Hadoop), ML  training (e.g., TensorFlow), …

Stages 
(identical tasks that 
can run in parallel)  

Data Dependencies 



Designing Optimal Schedulers is Intractable

A lot of considerations for optimal performance:

• Job dependency structure

• Degree of parallelism

• Scheduling order 

• Locality

• …

No “one-size-fits-all” solution:

Best algorithm depends on specific workload and system



Decima: Technical Challenges

Challenge: Huge state and action space

→ Scalable Graph CNN to process any number of job DAGs

Challenge: Variance caused by stochastic job arrival process

→ Variance reduction technique for RL in input-driven systems
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Decima Design
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Job DAG 1

Job DAG n

xv

Node features: 
• # of tasks  
• avg. task duration 
• # of current executors

Executor 1

Executor 2

Executor 4

Executor 3

Executor m

Set of identical 
free executors

How to encode scheduling decisions as actions?



Option 1: Assign all Executors in 1 Action

Problem: huge action space

Job DAG 1

Job DAG n

Executor 1

Executor 2

Executor 4

Executor 3

Executor m



Option 2: Assign 1 Executor per Action

Problem: long action sequences

Job DAG 1

Job DAG n

Executor 1

Executor 2

Executor 4

Executor 3

Executor m



Decima: Assign Groups of Executors per Action

21

Job DAG 1

Job DAG n

Executor 1

Executor 2

Executor 4

Executor 3

Executor m

Use 3 
executors

Use 1 
executor

Use 1 
executor

Action = (node, parallelism limit)



FIFO

 20 Spark jobs (TPC-H queries), 50 executors

272 sec

Stages



Shortest-
Job-First

145 sec



Fair 
110 sec



Decima
it=0

166 sec



Decima
it=3000

160 sec



Decima
it=6000

148 sec



Decima
it=9000

145 sec



Decima
it=12000

142 sec



Decima
it=15000

126 sec



Decima
it=18000

111 sec



Decima
it=21000

108 sec



Decima
it=24000

107 sec



Decima
it=27000

93 sec



Decima
it=30000

Decima improves average job completion time by >2x over existing 
schedulers, and 19-31% over best hand-crafted heuristics

89 sec



Our Work on Learning-Based Network Systems
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Cluster Scheduling
(Decima)

Jobs Workers

RL Techniques

Adaptive video streaming
(Pensieve)
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Input-Driven Environments

Dynamics driven by an exogenous stochastic input process
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Input-Driven Environments

Dynamics driven by an exogenous stochastic input process
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zt-1 zt zt+1

st-1 st st+1

at-1 at at+1

Standard MDP

input process

The input does not depend on the states and actions 



Reinforcement Learning for Input-Driven MDPs
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Bandwidth

Video bitrate

at

Future 
Input #1

Future 
Input #2

t

Score for action at = (return after at) − (baseline for st)

= σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝑏(𝑠𝑡)= σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝔼 σ𝑡′=𝑡

𝑇−1 𝑟𝑡′ |𝑠𝑡

Must take the future input into account 
when evaluating actions



Input-Dependent Baseline
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Expected return for trajectories from state st

with input sequence zt, zt+1, …

• Input-dependent baselines reduce variance without bias

• We use meta-learning to learn baseline efficiently

Score for action at  = σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝑏(𝑠𝑡)Score for action at  = σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝑏(𝑠𝑡 , 𝑧𝑡 , 𝑧𝑡+1, … )



Walker2d with Wind
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TRPO with standard baseline TRPO with input-dependent baseline



Half-Cheetah on Floating Tiles
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TRPO with standard baseline TRPO with input-dependent baseline



7-DoF Arm Tracking Moving Object
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TRPO with standard baseline TRPO with input-dependent baseline



Summary

• Significant opportunity to build smarter networks that can 
adapt to workload and environment

• Network systems are an exciting domain for ML/AI;                  
can lead to new techniques with broad applications

• Many challenges remain for learning-based systems

– Safe training & exploration

– Interpretability

– …
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