
Towards Network Systems that Improve
with Experience

Mohammad Alizadeh

1

Network Control Systems

Traffic Engineering

Adaptive Video Streaming Internet Telephony

Congestion Control

…...

Cluster Scheduling

2

720P

Learning Paradigm

1. Learn operating environment
& low-level goals

2. Learn algorithms that can adapt
to network/workload conditions

Classical Paradigm (1960 – now)

1. Specify operating environment
& low-level design goals

2. Build one algorithm that achieves
goals in (most) cases of interest

[Specify & Build] [Learn & Adapt]

Two Paradigms in Network Control

3

Learning

Two Paradigms in Network Control

Universality

Optimality

Homogenous Heterogeneous

High

Low Internet
(e.g., TCP)

Datacenters
(e.g., DCTCP)

Environment

Pe
rf

o
rm

an
ce

4

Our Work on Learning-Based Network Systems

5

Cluster Scheduling
(Decima)

Jobs Workers

RL Techniques

Adaptive video streaming
(Pensieve)

720P

TimeB
an

d
w

id
th

https://gigaom.com/2012/11/09/online-viewers-start-leaving-if-video-doesnt-play-in-2-seconds-says-study/
Video: La Luna (Pixar 2011)

Users start leaving if video doesn’t play in 2 seconds

6

Video Client Video Server

Request:
next video chunk at bitrate r

Response:
video content

InputOutput

1 sec/sec

0

1

2

3

0 50 100 150 200 250 300

Th
ro

u
gh

p
u

t

Time

Animation borrowed from Te-Yuan Huang (SIGCOMM ‘14) http://conferences.sigcomm.org/sigcomm/2014/doc/slides/38.pdf

bitrate
Adaptive Bitrate (ABR)

Algorithms

1 sec
video

content

bitrate

Dynamic Streaming over HTTP (DASH)

7

Throughput

Video bitrate

Network throughput
is variable & uncertain

Conflicting QoE goals

• Bitrate

• Rebuffering time

• Smoothness

Cascading effects
of decisions

Th
ro

u
gh

p
u

t
B

it
ra

te
(M

b
p

s)
B

u
ff

e
r

si
ze

(s
ec

)

Why is ABR Challenging?

8

buffer

ABR agent
bitrates

240P

480P

720P

1080P

network and video measurements

bandwidth

bit rate

720P

1. First network control system using modern deep reinforcement learning

2. 12-25% better QoE, with 10-30% less rebuffering than previous algorithms

3. Tailors ABR decisions specifically for different network conditions
Pensieve learns ABR algorithms automatically through experience

Our System: Pensieve

9

Reinforcement Learning

Agent Environment
Take action

Observe state

Reward

Goal: maximize expected total future reward
10

Action

Pensieve Design

State

xt xt-1

n1 n2 nm

bt

ct

lt

Past chunk throughput

Next chunk sizes

Current buffer size

Remaining chunks

Last chunk bit rate

State st

τt τt-1

xt-k+1

τt-k+1

Past chunk download time

btPast chunk bitrate

st

ct

Environment

+ 𝑞 𝑏𝑡 − 𝜇𝑇𝑡 − 𝜆 𝑞 𝑏𝑡 − 𝑞 𝑏𝑡−1

Reward rt

+ (bitrate) - (rebuffering) - (smoothness)

720P

240P

360P

720P

1080P

A
ct

io
n

a t

Reward

1D-CNN

1D-CNN

1D-CNN

1080P

720P

360P

240P

Agent

11

Pensieve Training System

{state, action, reward}
experiences

Policy gradient algorithm
to update NN

Video playback
Fast chunk-level simulator

Pensieve
worker

Pensieve
worker

Pensieve
worker

Pensieve
master

Model update
Large corpus of
network traces

cellular, broadband, synthetic

12

Pe
n

si
ev

e
M

P
C

Rebuffering

chances of outage

Pe
n

si
ev

e
b

u
ff

er
 (

se
c)

M
P

C

b
u

ff
er

 (
se

c)

Th
ro

u
gh

p
u

t
(m

b
p

s)

13

Our Work on Learning-Based Network Systems

14

Cluster Scheduling
(Decima)

Jobs Workers

RL Techniques

Adaptive video streaming
(Pensieve)

720P

TimeB
an

d
w

id
th

Scheduling Graph-Structured Workloads

15

Job 1

Job 2 Job 3

Scheduler

Executor 1

Executor m

Executor 2

Many systems encode jobs as directed acyclic graphs (DAGs)
• Data processing (e.g., Spark, Hadoop), ML training (e.g., TensorFlow), …

Stages
(identical tasks that
can run in parallel)

Data Dependencies

Designing Optimal Schedulers is Intractable

A lot of considerations for optimal performance:

• Job dependency structure

• Degree of parallelism

• Scheduling order

• Locality

• …

No “one-size-fits-all” solution:

Best algorithm depends on specific workload and system

Decima: Technical Challenges

Challenge: Huge state and action space

→ Scalable Graph CNN to process any number of job DAGs

Challenge: Variance caused by stochastic job arrival process

→ Variance reduction technique for RL in input-driven systems

17

Decima Design

18

Job DAG 1

Job DAG n

xv

Node features:
• # of tasks
• avg. task duration
• # of current executors

Executor 1

Executor 2

Executor 4

Executor 3

Executor m

Set of identical
free executors

How to encode scheduling decisions as actions?

Option 1: Assign all Executors in 1 Action

Problem: huge action space

Job DAG 1

Job DAG n

Executor 1

Executor 2

Executor 4

Executor 3

Executor m

Option 2: Assign 1 Executor per Action

Problem: long action sequences

Job DAG 1

Job DAG n

Executor 1

Executor 2

Executor 4

Executor 3

Executor m

Decima: Assign Groups of Executors per Action

21

Job DAG 1

Job DAG n

Executor 1

Executor 2

Executor 4

Executor 3

Executor m

Use 3
executors

Use 1
executor

Use 1
executor

Action = (node, parallelism limit)

FIFO

 20 Spark jobs (TPC-H queries), 50 executors

272 sec

Stages

Shortest-
Job-First

145 sec

Fair
110 sec

Decima
it=0

166 sec

Decima
it=3000

160 sec

Decima
it=6000

148 sec

Decima
it=9000

145 sec

Decima
it=12000

142 sec

Decima
it=15000

126 sec

Decima
it=18000

111 sec

Decima
it=21000

108 sec

Decima
it=24000

107 sec

Decima
it=27000

93 sec

Decima
it=30000

Decima improves average job completion time by >2x over existing
schedulers, and 19-31% over best hand-crafted heuristics

89 sec

Our Work on Learning-Based Network Systems

36

Cluster Scheduling
(Decima)

Jobs Workers

RL Techniques

Adaptive video streaming
(Pensieve)

720P

TimeB
an

d
w

id
th

Input-Driven Environments

Dynamics driven by an exogenous stochastic input process

37

720P

TimeN
e

tw
o

rk

b
a

n
d

w
id

th

Server 1Server 2 Server k

Load
balancer

TimeJ
o

b
 s

iz
e

Scheduler

Input-Driven Environments

Dynamics driven by an exogenous stochastic input process

38

zt-1 zt zt+1

st-1 st st+1

at-1 at at+1

Standard MDP

input process

The input does not depend on the states and actions

Reinforcement Learning for Input-Driven MDPs

39

Bandwidth

Video bitrate

at

Future
Input #1

Future
Input #2

t

Score for action at = (return after at) − (baseline for st)

= σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝑏(𝑠𝑡)= σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝔼 σ𝑡′=𝑡

𝑇−1 𝑟𝑡′ |𝑠𝑡

Must take the future input into account
when evaluating actions

Input-Dependent Baseline

40

Expected return for trajectories from state st

with input sequence zt, zt+1, …

• Input-dependent baselines reduce variance without bias

• We use meta-learning to learn baseline efficiently

Score for action at = σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝑏(𝑠𝑡)Score for action at = σ𝑡′=𝑡
𝑇−1 𝑟𝑡′ − 𝑏(𝑠𝑡 , 𝑧𝑡 , 𝑧𝑡+1, …)

Walker2d with Wind

41

TRPO with standard baseline TRPO with input-dependent baseline

Half-Cheetah on Floating Tiles

42

TRPO with standard baseline TRPO with input-dependent baseline

7-DoF Arm Tracking Moving Object

43

TRPO with standard baseline TRPO with input-dependent baseline

Summary

• Significant opportunity to build smarter networks that can
adapt to workload and environment

• Network systems are an exciting domain for ML/AI;
can lead to new techniques with broad applications

• Many challenges remain for learning-based systems

– Safe training & exploration

– Interpretability

– …

45

