How Do Terms of Trade Effects Matter for Trade Agreements

Mostafa Beshkar and Ryan Lee

Economics Department Indiana University

Pasargad Summer School, International Trade Workshop

◆□ → ◆□ → ▲ = → ▲ = → 의 < </p>
1/15

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).
 - The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).
 - The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).

イロト イポト イヨト イヨト 三日

- The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).

イロト イポト イヨト イヨト 三日

- The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).

- The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).
 - The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).
 - The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

- Unilaterally optimal tariffs are increasing in the **import market power** of the importing country (Bickerdike 1906 - Grossman and Helpman 1995.)
 - Tariffs dampen demand for foreign goods.
 - Therefore, tariffs could increase a country's welfare by reducing the relative import prices (i.e., improving ToT).
 - The ToT effect of tariff in a sector is greater the greater is the country's import market power in that sector.
- Evidence: Broda, Limao and Weinstein 2008.
- The tariff game is a Prisoner's dilemma:
 - Tariffs have negative externality on the foreign countries.
 - A lose-lose game.

• The objective of Trade Agreements is to contain the ToT effects (Bagwell and Staiger 1999).

- A **first-best trade agreement** should completely eliminate the link between tariffs and import market power.
- In practice, the negotiators may be unable to achieve a first-best trade agreement.
- Asymmetric Information (Beshkar, Bond, Rho 2016)
- Is Free-riding problem (Ludema and Mayda 2013)
- Transaction costs (Nicita, Olareaga, and Silva 2017, Beshkar and Bond 2017, Maggi and Staiger 2010)

- The objective of Trade Agreements is to contain the ToT effects (Bagwell and Staiger 1999).
 - ► A **first-best trade agreement** should completely eliminate the link between tariffs and import market power.
- In practice, the negotiators may be unable to achieve a first-best trade agreement.
- Asymmetric Information (Beshkar, Bond, Rho 2016)
- Pree-riding problem (Ludema and Mayda 2013)
- Transaction costs (Nicita, Olareaga, and Silva 2017, Beshkar and Bond 2017, Maggi and Staiger 2010)

- The objective of Trade Agreements is to contain the ToT effects (Bagwell and Staiger 1999).
 - ► A **first-best trade agreement** should completely eliminate the link between tariffs and import market power.
- In practice, the negotiators may be unable to achieve a first-best trade agreement.
- Asymmetric Information (Beshkar, Bond, Rho 2016)
- Pree-riding problem (Ludema and Mayda 2013)
- Transaction costs (Nicita, Olareaga, and Silva 2017, Beshkar and Bond 2017, Maggi and Staiger 2010)

- The objective of Trade Agreements is to contain the ToT effects (Bagwell and Staiger 1999).
 - ► A **first-best trade agreement** should completely eliminate the link between tariffs and import market power.
- In practice, the negotiators may be unable to achieve a first-best trade agreement.
- Asymmetric Information (Beshkar, Bond, Rho 2016)
- Pree-riding problem (Ludema and Mayda 2013)
- Transaction costs (Nicita, Olareaga, and Silva 2017, Beshkar and Bond 2017, Maggi and Staiger 2010)

- The objective of Trade Agreements is to contain the ToT effects (Bagwell and Staiger 1999).
 - ► A **first-best trade agreement** should completely eliminate the link between tariffs and import market power.
- In practice, the negotiators may be unable to achieve a first-best trade agreement.
- Asymmetric Information (Beshkar, Bond, Rho 2016)
- Free-riding problem (Ludema and Mayda 2013)
- Transaction costs (Nicita, Olareaga, and Silva 2017, Beshkar and Bond 2017, Maggi and Staiger 2010)

- The objective of Trade Agreements is to contain the ToT effects (Bagwell and Staiger 1999).
 - ► A **first-best trade agreement** should completely eliminate the link between tariffs and import market power.
- In practice, the negotiators may be unable to achieve a first-best trade agreement.
- Asymmetric Information (Beshkar, Bond, Rho 2016)
- Free-riding problem (Ludema and Mayda 2013)
- Transaction costs (Nicita, Olareaga, and Silva 2017, Beshkar and Bond 2017, Maggi and Staiger 2010)

• Negotiated and applied tariffs under the GATT and the WTO show a great variation across sectors and countries.

- ▶ The 10th and the 90th percentile of negotiated tariffs are 30% and 200% in Bangladesh, 3% and 18% in China, 0% and 25% in Australia, and the 0% and 9.4% in the U.S.
- Negotiated tariffs are in the form of caps on applied tariffs (Tariff Binding).
- Applied tariffs are often below the binding, creating Tariff Overhang.
- Why do governments negotiate such high tariff caps that are very often non-binding?

- Negotiated and applied tariffs under the GATT and the WTO show a great variation across sectors and countries.
 - ▶ The 10th and the 90th percentile of negotiated tariffs are 30% and 200% in Bangladesh, 3% and 18% in China, 0% and 25% in Australia, and the 0% and 9.4% in the U.S.
- Negotiated tariffs are in the form of caps on applied tariffs (Tariff Binding).
- Applied tariffs are often below the binding, creating Tariff Overhang.
- Why do governments negotiate such high tariff caps that are very often non-binding?

- Negotiated and applied tariffs under the GATT and the WTO show a great variation across sectors and countries.
 - The 10th and the 90th percentile of negotiated tariffs are 30% and 200% in Bangladesh, 3% and 18% in China, 0% and 25% in Australia, and the 0% and 9.4% in the U.S.
- Negotiated tariffs are in the form of caps on applied tariffs (Tariff Binding).
- Applied tariffs are often below the binding, creating Tariff Overhang.
- Why do governments negotiate such high tariff caps that are very often non-binding?

- Negotiated and applied tariffs under the GATT and the WTO show a great variation across sectors and countries.
 - The 10th and the 90th percentile of negotiated tariffs are 30% and 200% in Bangladesh, 3% and 18% in China, 0% and 25% in Australia, and the 0% and 9.4% in the U.S.
- Negotiated tariffs are in the form of caps on applied tariffs (Tariff Binding).
- Applied tariffs are often below the binding, creating Tariff Overhang.
- Why do governments negotiate such high tariff caps that are very often non-binding?

- Negotiated and applied tariffs under the GATT and the WTO show a great variation across sectors and countries.
 - The 10th and the 90th percentile of negotiated tariffs are 30% and 200% in Bangladesh, 3% and 18% in China, 0% and 25% in Australia, and the 0% and 9.4% in the U.S.
- Negotiated tariffs are in the form of caps on applied tariffs (Tariff Binding).
- Applied tariffs are often below the binding, creating Tariff Overhang.
- Why do governments negotiate such high tariff caps that are very often non-binding?

The objective of the governments in negotiations is to contain the negative externalities of unilateral trade policy.

イロト イポト イヨト イヨト 三日

- Maximizing the expected joint welfare.
- ② Government preferences for trade policy are subject to shocks.
 - ▶ Flexibility in the obligations is valued.
- Some interested parties may not join negotiations.
 - This could be due to a free-riding problem.

The objective of the governments in negotiations is to contain the negative externalities of unilateral trade policy.

イロト イポト イヨト イヨト 二日

- Maximizing the expected joint welfare.
- Government preferences for trade policy are subject to shocks.
 Flexibility in the obligations is valued.
- Some interested parties may not join negotiations.
 - This could be due to a free-riding problem.

The objective of the governments in negotiations is to contain the negative externalities of unilateral trade policy.

イロト イロト イヨト イヨト 三日

- Maximizing the expected joint welfare.
- ② Government preferences for trade policy are subject to shocks.
 - Flexibility in the obligations is valued.
- Some interested parties may not join negotiations.
 - This could be due to a free-riding problem.

The objective of the governments in negotiations is to contain the negative externalities of unilateral trade policy.

イロト イポト イヨト イヨト 三日

- Maximizing the expected joint welfare.
- Overnment preferences for trade policy are subject to shocks.
 - Flexibility in the obligations is valued.
- Some interested parties may not join negotiations.
 - This could be due to a free-riding problem.

The objective of the governments in negotiations is to contain the negative externalities of unilateral trade policy.

イロト イポト イヨト イヨト 三日

- Maximizing the expected joint welfare.
- ② Government preferences for trade policy are subject to shocks.
 - Flexibility in the obligations is valued.
- Some interested parties may not join negotiations.
 - This could be due to a free-riding problem.

The objective of the governments in negotiations is to contain the negative externalities of unilateral trade policy.

イロト イポト イヨト イヨト 三日

- Maximizing the expected joint welfare.
- ② Government preferences for trade policy are subject to shocks.
 - Flexibility in the obligations is valued.
- Some interested parties may not join negotiations.
 - This could be due to a free-riding problem.

• Political welfare of Home (importing country):

$$V(t;\theta) \equiv S(p(t)) + (1+\theta)\Pi(p(t)) + tp^*(t)m(p(t)),$$

where θ is the extra weight given to profits in the government's objective function.

• Welfare of the foreign (exporting) country *j* :

$$V_{j}^{*}(t) \equiv S_{j}^{*}(p^{*}(t)) + \Pi_{j}^{*}(p^{*}(t)).$$

• $\theta \in [\underline{\theta}, \overline{\theta}]$ is a random variable with pdf $f(\theta)$.

• Home has private information about the realized θ .

• Political welfare of Home (importing country):

$$V(t; heta) \equiv S(p(t)) + (1+ heta) \Pi(p(t)) + tp^*(t)m(p(t)),$$

where θ is the extra weight given to profits in the government's objective function.

• Welfare of the foreign (exporting) country *j* :

$$V_{j}^{*}(t) \equiv S_{j}^{*}(p^{*}(t)) + \Pi_{j}^{*}(p^{*}(t)).$$

• $\theta \in [\underline{\theta}, \overline{\theta}]$ is a random variable with pdf $f(\theta)$.

• Home has private information about the realized θ .

• Political welfare of Home (importing country):

$$V(t; heta) \equiv S(p(t)) + (1+ heta) \Pi(p(t)) + tp^*(t)m(p(t)),$$

where θ is the extra weight given to profits in the government's objective function.

• Welfare of the foreign (exporting) country *j* :

$$V_j^*(t) \equiv S_j^*(p^*(t)) + \Pi_j^*(p^*(t)).$$

- $\theta \in [\underline{\theta}, \overline{\theta}]$ is a random variable with pdf $f(\theta)$.
- Home has private information about the realized θ .

• Political welfare of Home (importing country):

$$V(t; heta) \equiv S(p(t)) + (1+ heta) \Pi(p(t)) + tp^*(t)m(p(t)),$$

where θ is the extra weight given to profits in the government's objective function.

• Welfare of the foreign (exporting) country *j* :

$$V_j^*(t) \equiv S_j^*(p^*(t)) + \Pi_j^*(p^*(t)).$$

- $\theta \in [\underline{\theta}, \overline{\theta}]$ is a random variable with pdf $f(\theta)$.
- Home has private information about the realized θ .

Objective of Negotiations

- The subject of negotiations: tariff binding rate for a given sector of Home.
- The objective of negotiations: maximizing the joint welfare of the participating countries ∀j ∈ P :

$$t^{B}(P) = \arg\max_{t^{B}} \int_{\underline{\theta}}^{\theta^{B}} \left[V(t^{N}(\theta); \theta) + \sum_{j \in P} V_{j}^{*} \left(t^{N}(\theta) \right) \right] f(\theta) d\theta$$
$$+ + \int_{\theta^{B}}^{\overline{\theta}} \left[V(t^{B}; \theta) + \sum_{j \in P} V_{j}^{*} \left(t^{B} \right) \right] f(\theta) d\theta,$$

where, θ^B is implicitly defined by $t^B \equiv t^N(\theta^B)$.

Objective of Negotiations

- The subject of negotiations: tariff binding rate for a given sector of Home.
- The objective of negotiations: maximizing the joint welfare of the participating countries ∀*j* ∈ *P* :

$$t^{B}(P) = \arg \max_{t^{B}} \int_{\underline{\theta}}^{\theta^{B}} \left[V(t^{N}(\theta); \theta) + \sum_{j \in P} V_{j}^{*} \left(t^{N}(\theta) \right) \right] f(\theta) d\theta$$
$$+ + \int_{\theta^{B}}^{\overline{\theta}} \left[V(t^{B}; \theta) + \sum_{j \in P} V_{j}^{*} \left(t^{B} \right) \right] f(\theta) d\theta,$$

where, θ^B is implicitly defined by $t^B \equiv t^N(\theta^B)$.

Optimal Tariff Bindings

• The maximization problem yields a corner solution if

$$\left(1+\frac{1}{\omega}\right)\frac{1}{\phi} < \frac{\eta-\underline{\theta}}{E[\theta]-\underline{\theta}}.$$

Theorem

(i) If $(1 + \frac{1}{\omega}) \frac{1}{\phi} < \frac{\eta - \theta}{E[\theta] - \theta}$, there will be no tariff overhang under the optimal tariff binding, which is given by $t^B = \frac{E[\theta] + \eta(1 - \phi)\omega}{\eta - E[\theta]}$. Moreover, if $\phi < 1$, the optimal tariff binding will be increasing in ω and this correlation diminishes as ϕ increases. (ii) If $(1 + \frac{1}{\omega}) \frac{1}{\phi} > \frac{\eta - \theta}{E[\theta] - \theta}$, there exists a local optimum under which tariff overhang is positive for some states of the world, θ . Moreover, for a sufficiently large $\phi < 1$, the optimal tariff binding is decreasing in ω and this correlation strengthens as ϕ increases.

Optimal Tariff Bindings

• The maximization problem yields a corner solution if

$$\left(1+\frac{1}{\omega}\right)\frac{1}{\phi} < \frac{\eta-\underline{\theta}}{E[\theta]-\underline{\theta}}.$$

Theorem

(i) If $(1 + \frac{1}{\omega}) \frac{1}{\phi} < \frac{\eta - \theta}{E[\theta] - \underline{\theta}}$, there will be no tariff overhang under the optimal tariff binding, which is given by $t^B = \frac{E[\theta] + \eta(1 - \phi)\omega}{\eta - E[\theta]}$. Moreover, if $\phi < 1$, the optimal tariff binding will be increasing in ω and this correlation diminishes as ϕ increases. (ii) If $(1 + \frac{1}{\omega}) \frac{1}{\phi} > \frac{\eta - \theta}{E[\theta] - \theta}$, there exists a local optimum under which tariff overhang is positive for some states of the world, θ . Moreover, for a sufficiently large $\phi < 1$, the optimal tariff binding is decreasing in ω and this correlation strengthens as ϕ increases.

Expected Applied Tariffs

• The expected applied tariff may be written as

$$E\left[t^{A}\right] = \int_{\underline{\theta}}^{\theta^{B}} t^{N}(\theta) f(\theta) d\theta + \int_{\theta^{B}}^{\overline{\theta}} t^{B}(\theta) f(\theta) d\theta.$$

• Taking derivative of this equation with respect to IMP yield

$$\frac{dE\left[t^{A}\right]}{d\omega} = \int_{\underline{\theta}}^{\theta^{B}} \frac{dt^{N}(\theta)}{d\omega} f(\theta) d\theta + \int_{\theta^{B}}^{\overline{\theta}} \frac{dt^{B}(\theta)}{d\omega} f(\theta) d\theta$$

Expected Applied Tariffs

• The expected applied tariff may be written as

$$E\left[t^{A}\right] = \int_{\underline{\theta}}^{\theta^{B}} t^{N}(\theta) f(\theta) d\theta + \int_{\theta^{B}}^{\overline{\theta}} t^{B}(\theta) f(\theta) d\theta.$$

• Taking derivative of this equation with respect to IMP yield

$$\frac{dE\left[t^{A}\right]}{d\omega} = \int_{\underline{\theta}}^{\theta^{B}} \frac{dt^{N}(\theta)}{d\omega} f(\theta) d\theta + \int_{\theta^{B}}^{\overline{\theta}} \frac{dt^{B}(\theta)}{d\omega} f(\theta) d\theta$$
Expected Applied Tariffs

Theorem

Under the negotiated tariff bindings, the expected applied tariff will be i) increasing in ω if ω is sufficiently low, ii) decreasing in ω if ω is sufficiently close to but strictly less than $\overline{\omega}$, and ϕ is sufficiently large, iii) independent of (increasing in) ω if $\omega > \overline{\omega}$ and $\phi = 1$ ($\phi < 1$). Moreover, the positive relationship in case of $\phi < 1$ weakens monotonically as ϕ increases.

• The baseline specification:

$$egin{aligned} t^B_{ik} &= lpha + eta_1 M P_{ik} + eta_2 (MP*H)_{ik} + eta_3 PS_i + eta_4 (FTAShare/\mu)_{ik} \ &+ eta_5 H_{ik} + \delta_{HS2} + arepsilon_{ik}, \end{aligned}$$

	log (inverse export elasticity) IV-Tobit PDI included IV-Tobit			Rauch PDI Tobit		log(inverse) IV-Tobit	
	FTA	PTA	FTA	PTA	FTA	FTA	PTA
MP	-3.811***	-3.770***	-4.116***	-4.223***		-3.810***	-3.787***
MP*HHI	(0.499) -4.792*** (0.953)	(0.767) -4.352*** (0.959)	(0.542) -4.786*** (0.848)	(0.709) -4.119*** (0.681)	-2.164 (1.545)	(0.501) -4.803*** (0.956)	(0.829) -4.350*** (0.923)
Political Stability	-7.830*** (0.464)	-7.697*** (0.532)	-7.908*** (0.618)	-7.765*** (0.515)	-10.88*** (0.481)	-7.830*** (0.465)	(0.923) -7.702*** (0.609)
FTAShareMu	(0.404) 0.230** (0.0901)	(0.532) 0.202 (0.141)	0.0664 (0.0647)	0.0621 (0.0501)	(0.481) 0.694*** (0.180)	(0.405) 0.229** (0.0902)	0.0182 (0.0463)
HHI	-10.40*** (2.666)	-11.32*** (2.973)	-10.31*** (2.752)	-10.70*** (2.106)	(0.130) 11.46*** (1.182)	-10.39*** (2.678)	-11.30*** (2.853)
Rauch PDI	(2.000)	(2.513)	(2.132)	(2.100)	3.501*** (1.050)	2.664*** (0.588)	2.434*** (0.558)
Constant	16.19*** (2.920)	17.18*** (2.682)	15.31*** (2.637)	15.95*** (3.425)	21.39*** (2.134)	13.51*** (2.972)	14.66*** (3.743)
Observations	73,479	72,065	90,677	88,890	85,001	73,479	72,065

¹ Clustered standard errors by Country-HS2 in parentheses

[∠] *** p<0.01, ** p<0.05, * p<0.

	log (inverse export elasticity) IV-Tobit PDI included IV-Tobit			Rauch PDI Tobit		log(inverse) IV-Tobit	
	FTA	PTA	FTA	PTA	FTA	FTA	PTA
MP	-3.811***	-3.770***	-4.116***	-4.223***		-3.810***	-3.787***
MP*HHI	(0.499) -4.792*** (0.953)	(0.767) -4.352*** (0.959)	(0.542) -4.786*** (0.848)	(0.709) -4.119*** (0.681)	-2.164 (1.545)	(0.501) -4.803*** (0.956)	(0.829) -4.350*** (0.923)
Political Stability	-7.830*** (0.464)	-7.697*** (0.532)	-7.908*** (0.618)	-7.765*** (0.515)	-10.88*** (0.481)	-7.830*** (0.465)	(0.923) -7.702*** (0.609)
FTAShareMu	(0.404) 0.230** (0.0901)	(0.532) 0.202 (0.141)	0.0664 (0.0647)	0.0621 (0.0501)	(0.481) 0.694*** (0.180)	(0.405) 0.229** (0.0902)	0.0182 (0.0463)
HHI	-10.40*** (2.666)	-11.32*** (2.973)	-10.31*** (2.752)	-10.70*** (2.106)	(0.130) 11.46*** (1.182)	-10.39*** (2.678)	-11.30*** (2.853)
Rauch PDI	(2.000)	(2.513)	(2.132)	(2.100)	3.501*** (1.050)	2.664*** (0.588)	2.434*** (0.558)
Constant	16.19*** (2.920)	17.18*** (2.682)	15.31*** (2.637)	15.95*** (3.425)	21.39*** (2.134)	13.51*** (2.972)	14.66*** (3.743)
Observations	73,479	72,065	90,677	88,890	85,001	73,479	72,065

¹ Clustered standard errors by Country-HS2 in parentheses

² *** p<0.01, ** p<0.05, * p<0.1

	log (inverse export elasticity)			Rauch PDI	log(inverse) IV-Tobit		
	IV-Tobit P FTA	DI included PTA	FTA	Tobit PTA	Tobit FTA	IV- FTA	PTA
MP	-3.811***	-3.770***	-4.116***	-4.223***		-3.810***	-3.787***
	(0.499)	(0.767)	(0.542)	(0.709)		(0.501)	(0.829)
MP*HHI	-4.792***	-4.352***	-4.786***	-4.119***	-2.164	-4.803***	-4.350***
	(0.953)	(0.959)	(0.848)	(0.681)	(1.545)	(0.956)	(0.923)
Political Stability	-7.830***	-7.697***	-7.908***	-7.765***	-10.88***	-7.830***	-7.702***
	(0.464)	(0.532)	(0.618)	(0.515)	(0.481)	(0.465)	(0.609)
FTAShareMu	0.230**	0.202	0.0664	0.0621	0.694***	0.229**	0.0182
	(0.0901)	(0.141)	(0.0647)	(0.0501)	(0.180)	(0.0902)	(0.0463)
HHI	-10.40***	-11.32***	-10.31***	-10.70***	11.46***	-10.39***	-11.30***
	(2.666)	(2.973)	(2.752)	(2.106)	(1.182)	(2.678)	(2.853)
Rauch PDI					3.501***	2.664***	2.434***
					(1.050)	(0.588)	(0.558)
Constant	16.19***	17.18***	15.31***	15.95***	21.39***	13.51***	14.66***
	(2.920)	(2.682)	(2.637)	(3.425)	(2.134)	(2.972)	(3.743)
Observations	73,479	72,065	90,677	88,890	85,001	73,479	72,065

 1 Clustered standard errors by Country-HS2 in parentheses 2 *** p<0.01, ** p<0.05, * p<0.1

Taking into account the non-monotinicity

• Two strategies:

O Alternative specification:

$$t_{ik}^{B} = \alpha + \beta_{1}(MP * SB)_{ik} + \beta_{2}(MP * WB)_{ik} + \beta_{3}(MP * H)_{ik} + \beta_{4}PS_{i} + \beta_{5}(FTAShare/\mu)_{ik} + \beta_{6}H_{ik} + \delta_{HS2} + \varepsilon_{ik}.$$

② Running regression on strongly-bound sectors.

Taking into account the non-monotinicity

- Two strategies:
- Alternative specification:

$$t_{ik}^{B} = \alpha + \beta_{1}(MP * SB)_{ik} + \beta_{2}(MP * WB)_{ik} + \beta_{3}(MP * H)_{ik} + \beta_{4}PS_{i} + \beta_{5}(FTAShare/\mu)_{ik} + \beta_{6}H_{ik} + \delta_{HS2} + \varepsilon_{ik}.$$

② Running regression on strongly-bound sectors.

Taking into account the non-monotinicity

- Two strategies:
- Alternative specification:

$$t_{ik}^{B} = \alpha + \beta_{1}(MP * SB)_{ik} + \beta_{2}(MP * WB)_{ik} + \beta_{3}(MP * H)_{ik} + \beta_{4}PS_{i} + \beta_{5}(FTAShare/\mu)_{ik} + \beta_{6}H_{ik} + \delta_{HS2} + \varepsilon_{ik}.$$

Q Running regression on strongly-bound sectors.

Alternative specification

	FTA	PTA	FTA
MP*SB	6.824***	5.816***	6.767***
	(0.960)	(1.239)	(1.518)
MP*WB	-8.348***	-9.267***	-8.301***
	(0.711)	(0.916)	(0.880)
MP*HHI	-3.549***	-1.722**	-3.239***
	(0.889)	(0.823)	(0.913)
Political Stability	-5.858***	-5.826***	-5.814***
	(0.497)	(0.451)	(0.624)
FTAShareMu	0.0673	0.0663*	0.191*
	(0.0424)	(0.0398)	(0.114)
HHI	-4.827*	-2.160	-3.766
	(2.675)	(2.763)	(2.472)
Rauch PDI	()	(2.786***
			(0.688)
			(0.000)
Constant	1.241	-0.375	-1.452
	(3.264)	(3.765)	(4.148)
	(1.201)	(11.00)	(
Observations	90,677	88,890	73,479
1			

¹ Clustered standard errors by Country-HS2 in parentheses

² *** p<0.01, ** p<0.05, * p<0.3

Alternative specification

	FTA	PTA	FTA
10000	c		c = c=+++
MP*SB	6.824***	5.816***	6.767***
	(0.960)	(1.239)	(1.518)
MP*WB	-8.348***	-9.267***	-8.301***
	(0.711)	(0.916)	(0.880)
MP*HHI	-3.549***	-1.722**	-3.239***
	(0.889)	(0.823)	(0.913)
Political Stability	-5.858***	-5.826***	-5.814***
	(0.497)	(0.451)	(0.624)
FTAShareMu	0.0673	0.0663*	0.191*
	(0.0424)	(0.0398)	(0.114)
ННІ	-4.827*	-2.160	-3.766
	(2.675)	(2.763)	(2.472)
Rauch PDI	()	(2.786***
			(0.688)
			(0.000)
Constant	1.241	-0.375	-1.452
	(3.264)	(3.765)	(4.148)
	. ,	. ,	. ,
Observations	90,677	88,890	73,479

¹ Clustered standard errors by Country-HS2 in parentheses

² *** p<0.01, ** p<0.05, * p<0.1

Alternative specification

	FTA	PTA	FTA
MD*CD	C 00 4***	F 01 (****	c =c=+++
MP*SB	6.824***	5.816***	6.767***
	(0.960)	(1.239)	(1.518)
MP*WB	-8.348***	-9.267***	-8.301***
	(0.711)	(0.916)	(0.880)
MP*HHI	-3.549***	-1.722**	-3.239***
	(0.889)	(0.823)	(0.913)
Political Stability	-5.858***	-5.826***	-5.814***
	(0.497)	(0.451)	(0.624)
FTAShareMu	0.0673	0.0663*	0.191*
	(0.0424)	(0.0398)	(0.114)
HHI	-4.827*	-2.160	-3.766
	(2.675)	(2.763)	(2.472)
Rauch PDI	. ,	. ,	2.786***
			(0.688)
Constant	1.241	-0.375	-1.452
	(3.264)	(3.765)	(4.148)
Observations	90,677	88,890	73,479

¹ Clustered standard errors by Country-HS2 in parentheses ² *** p<0.01, ** p<0.05, * p<0.1

Strongly bound sectors

	All Co	untries	LM Co	LM Countries		
	FTA	PTA	FTA	PTA		
MP	2.744***	1.832***	2.464***	1.932***		
	(0.431)	(0.473)	(0.437)	(0.484)		
MP*HHI	-4.480***	-2.565***	-3.853***	-2.707***		
	(0.788)	(0.722)	(0.608)	(0.618)		
Political Stability	-10.84***	-10.99***	-14.39***	-14.67***		
	(1.008)	(0.959)	(1.435)	(1.326)		
FTAShareMu	0.0212	0.0145	0.0522	0.0404		
	(0.0836)	(0.0756)	(0.107)	(0.133)		
HHI	-3.584**	0.511	-0.691	0.614		
	(1.544)	(1.502)	(1.481)	(1.173)		
Constant	11.92**	10.75***	17.33***	17.41***		
	(5.612)	(3.801)	(3.807)	(3.880)		

15 / 15

Strongly bound sectors

	All Co	untries	LM Co	LM Countries		
	FTA	PTA	FTA	ΡΤΑ		
MP	2.744***	1.832***	2.464***	1.932***		
	(0.431)	(0.473)	(0.437)	(0.484)		
MP*HHI	-4.480***	-2.565***	-3.853***	-2.707***		
	(0.788)	(0.722)	(0.608)	(0.618)		
Political Stability	-10.84***	-10.99***	-14.39***	-14.67***		
	(1.008)	(0.959)	(1.435)	(1.326)		
FTAShareMu	0.0212	0.0145	0.0522	0.0404		
	(0.0836)	(0.0756)	(0.107)	(0.133)		
HHI	-3.584**	0.511	-0.691	0.614		
	(1.544)	(1.502)	(1.481)	(1.173)		
Constant	11.92**	10.75***	17.33***	17.41***		
	(5.612)	(3.801)	(3.807)	(3.880)		

15 / 15

Strongly bound sectors

	All Co	untries	LM Co	LM Countries		
	FTA	PTA	FTA	ΡΤΑ		
MP	2.744***	1.832***	2.464***	1.932***		
	(0.431)	(0.473)	(0.437)	(0.484)		
MP*HHI	-4.480***	-2.565***	-3.853***	-2.707***		
	(0.788)	(0.722)	(0.608)	(0.618)		
Political Stability	-10.84***	-10.99***	-14.39***	-14.67***		
	(1.008)	(0.959)	(1.435)	(1.326)		
FTAShareMu	0.0212	0.0145	0.0522	0.0404		
	(0.0836)	(0.0756)	(0.107)	(0.133)		
HHI	-3.584**	0.511	-0.691	0.614		
	(1.544)	(1.502)	(1.481)	(1.173)		
Constant	11.92**	10.75***	17.33***	17.41***		
	(5.612)	(3.801)	(3.807)	(3.880)		

15 / 15