
Testing	Networked	Systems:	
Theory	and	Practice

Mohammad	Mousavi

Pasargad	School	2018 1

A	discipline of	testing	is:

extremely	important,	and	
can	be	rigorous,	too.

Pasargad School	2018 2

Part	1:	

(Model-Based)	Testing	
Fundamentals:

Theory	and	Practice

Pasargad School	2018 3

Based	on	joint	work	with:

• Hamid	Reza	Asaadi (U	Tehran,	now	at	Stony	Brook	U),
• Rachid Kherrazi (Philips	Healthcare,	now	at	Promedico),	

• Ramtin Khosravi (U	Tehran),	
• Mehmet	Kovacioglu (Philips	Healthcare,	now	at	Credit	Suisse),

• Neda	Noroozi (TU	Eindhoven,	now	at	Nspyre),	
• Mahsa Varshosaz (Halmstad U),	
• Vivek Vishal	(Philips	Healthcare,	now	at	ASML),	and	
• Tim	Willemse (TU	Eindhoven).

4Pasargad	School	2018

Testing:

Why?	What?	How?

Pasargad School	2018 5

Why?
Software	at	Your	Heart

Software	glitches	in	pacemakers
“Company	said	it	has	not	received	
any	reports	of	deaths	or	clinical	
complications	resulting	from	the	
glitch,	which	appears	in	about	53	
out	of	every	199,100	cases.”

Pasargad	School	2018 6

[Killed	by	Code,		2010]

Why?
Software	at	Critical	Infrastructure

… a	glitch	caused	more	than	
3,200	US	prisoners	to	be	
released	early.	The	software	
calculates	a	prisoner’s	
sentence	depending	on	
good/bad	behaviour and	was	
introduced	in	2002.

[BBC	News	2015]

Photo	by	Thomas	Hawk	@	Flicker

Pasargad	School	2018 7

Why?
Software	at	Your	Car

Over	the	past	two	years	
Nissan	has	been	recalling	
airbags	adding	up	to	over	1	
million	cars …	due	to	a	glitch	
in	the	airbag's	sensory	
detectors.	There	has	been	a	
reported	two	accidents	due	to	
this	software	failure.	

Photo	from	Wikipedia

Pasargad	School	2018 8

Why?
Software	at	Your	Heart

At	least	212	deaths from	device	
failure in	five	different	brands	of	
implantable	cardioverter-
defibrillator	(ICD) according	to	a	
study	reported	to	the	FDA	

[Killed	by	Code,	2010]

Pasargad	School	2018 9

Why?
Bugs	(Faults):	Facts	of	Life

“Coders	introduce	bugs at	the	
rate	of	4.2	defects	per	hour	of
programming.	If	you	crack	the
whip	and	force	people	to	move
more	quickly,	things	get	even
worse.”

[Watts	Humphreys]

Pasargad	School	2018 10

Photo	Copyright:	Tricentis

Why?
Bugs	(Faults):	Facts	of	Life

“Cost	of	software	faults	in	
2016:	1100	Billion	USD,

Number	of	people	affected	
by	software	faults:	
4.4	Billion	people.”

[Tricentis,		Software	Fail	Watch,	2016]

Pasargad	School	2018 11

Why?
Boehm’s	Curve

Pasargad	School	2018 12

Photo	from	Wikipedia

What?
Faults,	Errors,	Failures

• Fault:	incorrect	implementation:
– commission:	wrong	implementation
– omission:	forgotten	implementation

(the	more	difficult	one)

• Error:	incorrect	system	state

• Failure	(anomaly,	incident)	:	
visible	error	in	the	behavior

Pasargad	School	2018 13

Example

Implementation:	
#include	<iostream>
#include		<math.h>	

int main()	{
int i;	
cin >>	i;
i =	2	*	i;	
i =	pow(i,	3);	
cout <<	i;	
return	0;

}

Spec:	inputs	an	integer,	and	outputs	2*i3

Pasargad	School	2018 14

Example

1. cin >>	i;
2. i =	2	*	i;	
3. i =	pow(i,	3);	
4. cout <<	i;	

• Conceptual	mistake:	confusing	the	binding	power	of	operators
• Fault:	Statements	2	and	3	are	in	the	wrong	order
• Error:	State	of	the	program	after	line	3	may	have	the	wrong	value	

for	i.
• Failure:

– Test-case:	input	1,	expected	output	2.
– Actual	execution:	input	1	...	output	8!

Pasargad	School	2018 15

What?
Testing

Planned	experiments	to:

1. reveal	bugs	(turn	faults	into	failures,	test	to	fail),
“Testing	can	show	the	presence	of	bugs,	but	not	
their	absence.”	[Dijkstra]

2. gain	confidence	in	software	quality (test	to	pass)

Pasargad	School	2018 16

What?
Testing:	Validation	and	Verification

• Validation: Have	we	made	the	right	product;	
compliance	with	the	intended	usage	(often:	user-
centered,	manual	process,	on	the	end	product)	

• Verification: Have	we	made	the	product	right;	
compliance	between	artifacts	of	different	phases	
(often:	artifact-driven,	formalizable and	
mechanizable process	among	all	phases)

Pasargad	School	2018 17

How?
Test-Case,	Test-Suite

• Test-Case:	a	pair	of
– inputs	(e.g.,	running	environment,	input	values	or	
pre-conditions,	timing	of	events)	and	

– expected	outputs	(e.g.,	concrete	output	values	or	
symbolic	properties	input	and	output)

• Test-Suite: a	set	or	list	of	test-cases

Pasargad	School	2018 18

What?
Testing

Pasargad	School	2018 19

What?
Levels	of	Testing

Pasargad	School	2018 20

Unit	Testing
jUnit,	QuickCheck,
EvoSuite
Test-Driven	Dev.	
Equivalence	Partitioning,	
Decision	Tables,
Classification	Trees

Integration	Testing
jUnit,	Mockito
Dependency	Injection
Mocking

System	Testing
(Acceptance,	User)	
Selenium,	EyeAutomate
GUI	Model	Testing,	
Automated	GUI	Testing

Units

Subsystems

System

Example

Step	1:	
Fix	the	signature	of	the	class

package	example.stack;
public	class	SimpleStack {

public	boolean isEmpty();
public	int pop();
public	void	push(int item)				

}

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 21

Example

Write	class	invariants	and	a	few	properties	for	each	method:

/*
Pre-Condition: True	(can	be	called	in	all	states,	with	all	inputs)
Returns:	
- true	on	an		empty	initialized	SimpleStack
- false	on	a	SimpleStack on	which	more	successful	“push”es are					

performed	than	“pop”s
State	remains	unchanged	in	both	cases	*/	

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 22

Example

Step	3:	
Start	with	a	test:	

@Test
public	void	testNewStackIsEmpty()	{
SimpleStack stack	=	new	SimpleStack();
Assert.assertTrue("New	stack	should	be	empty!",

true	==	stack.isEmpty());
}

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 23

Example

Step	4:	
Test	and	check	if	any	test	fails.	
If	so,	write	the	minimal	amount	of	code	to	pass	the	test(s):	

public	class	SimpleStack {
public	boolean isEmpty()	{

return	true;
}

}	

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 24

Example

Step	5:	
Refactor	the	code	if	needed.

Repeat	steps	3	to	5	until	the	requirements	are	covered.	

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 25

Example

Step	3:	
Start	with	a	test:	
@Test
public	void	testNewStackPush()	{
SimpleStack stack	=	new	SimpleStack();
int item	=	1;
stack.push(item);
Assert.assertFalse("Stack	shouldn’t	be	empty	after	a	push!",

stack.isEmpty());
}	

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 26

Example
Step	4:	
Test	and	check	if	any	test	fails.	
If	so,	write	the	minimal	amount	of	code	to	pass	the	test(s):	

public	class	SimpleStack {
boolean empty	=	true;
public	void	push(int item)	{

empty	=	false;
}
public	boolean isEmpty()	{

return	empty;
}

}	 Pasargad	School	2018 27

Example

Step	5:	
Refactor	the	code	if	needed.

Repeat	steps	3	to	5	until	the	requirements	are	covered.	

Test-Driven	Development	of	a	SimpleStack Class	(in	Java)

Pasargad	School	2018 28

What We Do	Not	Cover:
Test	Management	and	Policy

Pasargad	School	2018 29

What We Do	Not	Cover:
Alternatives	to Testing

Pasargad	School	2018 30

• Model	Checking:	test	the	state-space	
(all	executions)	for	formally	specified	properties

+		rigorous	analysis,	push-button technology

- not	(yet)	scalable	to	very	large	systems	
(state-space	explosion)

What We Do	Not	Cover:
Alternatives	to Testing

Pasargad	School	2018 31

• Static	Analysis:	test	abstract	properties	without	running	the	
program,	e.g.,	division	by	zero	and	empty/unspecified	cases

+		automatic	and	scalable for	generic	and	abstract	properties;
+		existing	powerful	tools;

- involves	approximation	(true	negatives	and	false	positives);
- complicated	(may	involve	theorem	proving)	for	concrete	and
specific	properties	(proving	the	abstraction	function	
to	be	“correct")

Theory:

Introduction	to	Model-Based	Testing

Pasargad	School	2018 32

Model-Based	Testing

• Abstractions	from	reality

• Separating	different	concerns

• Approximating	system	behavior	
and	/	or	its	environment

3
3

Pasargad	School	2018

Model-Based	Testing
• Modeling	the	desired	behavior	(system)	/	
possible	interactions	(environment)	

rcv_pos_req?

snd_core_req!snd_pos_resp!

rcv_core_resp? time_out?

3
4

Pasargad	School	2018

rcv_pos_req?

snd_core_req!snd_pos_resp!

rcv_core_req? time_out?

snd_core_req!snd_pos_resp!

rcv_core_req? time_out?

rcv_pos_req?

3
5

Model-Based	Testing

[Tretmans,	2008]

Pasargad	School	2018

36

Model-Based	Testing

Theory:

Testing	from	Labeled	Transition	Systems	

Pasargad	School	2018 37

Equivalence	By	Observation

rcv_pos_req?

snd_core_req!snd_pos_resp!

rcv_core_req? time_out?

snd_core_req!snd_pos_resp!

rcv_core_req? time_out?

rcv_pos_req?

38Pasargad	School	2018

a

b
Next

39Pasargad	School	2018

a

a

b
Next

40Pasargad	School	2018

b

a

b
Next

41Pasargad	School	2018

a

b
Next

42Pasargad	School	2018

Completed	Trace	Equivalence

I »ctr S

traces(I)	=	traces(S)

c_traces(I)	=	c_traces(S)

43Pasargad	School	2018

Coin?

Tea!Coffee!

Coin?

44Pasargad	School	2018

Coin?

Coffee! Tea!

»ctr
?

Moral	of	the	story:	
trace	equivalence	is	too	coarse	
for	conformance	testing	open	systems

a

c

a

b
0
1

a b c
Next

45Pasargad	School	2018

a

a

c

a

b
0
1

a b c
Next

46Pasargad	School	2018

a

a

c

a

b
0
1

a b c
Next

47Pasargad	School	2018

a

c

a

b
0
1

a b c
Next

48Pasargad	School	2018

Coin?

Tea!Coffee!

Coin?

49Pasargad	School	2018

Coin?

Coffee! Tea!

Coin!

Tea!

Environment System

Coffee? Coffee!

What we did
using switches

50Pasargad	School	2018

Coin? Coin?

Testing	Equivalence

I »te S [De Nicola and Hennessy’84]
[Brookes,Hoare, and Roscoe’84]
[Darondeau’82][Kennaway’81]

for	every	environment	E:

traces(E || I)	=	traces(E || S)

c_traces(E || I)	=	c_traces(E || S)
51Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

52Pasargad	School	2018

a

a

c

a

b
0
1

a b c
idle

Next

53Pasargad	School	2018

a

a

c

a

b
0
1

a b c
idle

Next

54Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

55Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

56Pasargad	School	2018

c

a

c

a

b
0
1

a b c
idle

Next

57Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

58Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

59Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

60Pasargad	School	2018

a

c

a

b
0
1

a b c
idle

Next

Now, we know that we have completed a trace.
61Pasargad	School	2018

a

a

c

a

Env

S1

b

b

 q

c cb

a

S2occurs if no other
transition can

62Pasargad	School	2018

a

Env

S1

b

a

c

a

b

 q

c cb

a

S2

c_traces(Env	ùïS1)	=	{ab,		aqc}

c_traces(Env	ùïS2)	=	{ab}
63Pasargad	School	2018

Refusal	Equivalence

I »rf S [Philips’87]

for	every	environment	E:

traces(E ùï I)	=	traces(E ùï S)

c_traces(E ùï I)	=	c_traces(E ùï S)
64Pasargad	School	2018

And	there	is	more!

65

You	are	here!

The	RvG Linear	Time	– Branching	Time	Spectrum

Pasargad	School	2018

Defining	specifications	at	a	higher-level

cb

a

Specification

a0
1

a b c
idle

Next

a0
1

a b c
idle

Next

Impl.	1

Impl.	2

66Pasargad	School	2018

Testing	Pre-order

for	every	environment	E:

traces(E || I)	 Í traces(E || S)

c_traces(E || I)	Í c_traces(E || S)

I te S [De Nicola and Hennessy’84]

67Pasargad	School	2018

Restriction	to	Specification

Feature	#1
Partial	Specification

a0
1

a b c
idle

Next Full	Implementation

cb

a a

b

a

c

a

b

Feature	#2
Partial	Specification

Feature	#3
Partial	Specification 68Pasargad	School	2018

Restriction	to	Specification

I conf S [Brinksma87]

for	every	environment	E:

traces(E || I)	Ç traces(S) Í traces(E || S)

c_traces(E || I)	Ç traces(S) Í c_traces(E || S)

69Pasargad	School	2018

I/O	Transition	Systems

Distinguishing	between	input	and	output	actions

!error!response

?request

?response

!request

70Pasargad	School	2018

Pre-orders	on	I/O	transition	systems

• The	same	notions	apply	here
– I/O	test	pre-order
– I/O	refusal	pre-order

ior
for	every	environment	E:

traces(E ùï I)	Í traces(E ùï S)

c_traces(E ùï I)	Í c_traces(E ùï S)

I S

71Pasargad	School	2018

I/O	Conformance

Informally,	
I/O	Conformance	=	I/O	Refusal	restricted	to	

specification	traces

I ioco S [Tretmans’95]

72Pasargad	School	2018

Black-box	testing	for	ioco

cb

a

Specification

a0
1

a b c
idle

Next

Implementation

a

b

Test	Case

73Pasargad	School	2018

Example

?b

!a

?b

?b

?b

!a

?b

t

!b

fail passpass

q

q q

?a

?a ?a

74Pasargad	School	2018

ioco	Test	Cases

• I/O	transition	systems
• The	only	terminal	states:											and
• Reversed	I/O	actions
• Special	action	q
• Finite	and	deterministic !b

fail passpass

q

q q

?a

?a ?a

pass fail

75Pasargad	School	2018

Automatic	Test	Case	Generation

• Init:	
– Generate	an	initial	state

• Recursion:
– At	each	point	in	the	recursion	choose	non-
deterministically	between:
1. Stopping	the	recursion
2. Supplying	an	input
3. Observing	an	output	(one	transition	per	output	action)

76Pasargad	School	2018

Practice:

EFT	and	X-Ray	Machine	Cases

Pasargad	School	2018 77

Electronic	Funds	Transfer	(EFT)

EFT	Switch

Interbank	
Network

EFT	Switch

Core	
Banking	
System

78Pasargad	School	2018

The	System	Under	Test

• An	Operational	EFT	Switch,	
developed	at	Fanap

• Java	Application	(~100	KLOC)
• Extensive	use	of	Java	frameworks

• Already	tested,	but	not	
with	a	disciplined	view
on	concurrency

79

N
etw

ork M
anger

M
essage M

anager

Flow
 M

anager

Service Layer
C

om
ponent Layer

ProtocolToIFx
Handler

Message
Binder

Authorization

Message
Processor

IFXToProtocol
Handler

Exception
Handler

Transaction
Service

Terminal
Service

Cell Charge
Service

Settlement
Service

DAO Service

Financial
Entity Service

Reversal
Handler

Settlement

Pasargad	School	2018

Complex	Architectures

80Pasargad	School	2018

Thread	Pool Integration
Services

Session	
Management

Object	Cache

Logging

DatabaseDomain	Logic

Security

Persistence	
Frameworks

Transaction	
Management

81Pasargad	School	2018

Database

Thread	Pool Integration
Services

Session	
Management

Object	Cache

Logging

Domain	Logic

Security

Persistence	
Frameworks

Transaction	
Management

Thread	Pool Integration
Services

Session	
Management

Object	Cache

Logging

Domain	Logic

Security

Persistence	
Frameworks

Transaction	
Management

Thread	Pool Integration
Services

Session	
Management

Object	Cache

Logging

Domain	Logic

Security

Persistence	
Frameworks

Transaction	
Management

82Pasargad	School	2018

Example	Scenarios

EFT	Switch Core	
Banking	
System

POS	
Terminal

purchase	request

purchase	request

purchase	response

purchase	response

83Pasargad	School	2018

Example	Scenarios

EFT	Switch Core	
Banking	
System

POS	
Terminal

purchase	request

purchase	request

purchase	response
purchase	resp.

reversal	response
reversal	request

84Pasargad	School	2018

ISO	8583	Standard

Message	Flows

85Pasargad	School	2018

ISO	8583	Standard

Transaction	Flows

86Pasargad	School	2018

ISO	8583	Standard

Business	Rules

87Pasargad	School	2018

Concurrent	Transactions

Purchase	Transaction	#1

POS	#1
Reversal	Transaction	#2

Purchase	Transaction	#2

POS	#2

88Pasargad	School	2018

Our	Method

• Using	Model-Based	Testing

• Using	a	set	of	integrated	tools
– Generating and	running	test	cases
– Logging and	prioritizing	test	cases
– Measuring	test	coverage
– Testing	business	rules

89Pasargad	School	2018

Back	to	the	real	world!

90Pasargad	School	2018

Switch	Specification

• Modeling	in	UPPAAL
• » 25	automata

Switch	behavior	in	purchase	scenario 91Pasargad	School	2018

Purchase	Use	Case

Specification	Structure

POS	Model Switch	Model Core	Model
P-S	

Connector
S-C	

Connector

Four	uses	cases	till	now

92Pasargad	School	2018

Testing	Ecosystem	
(anno	2008)

cb

a

Switch	Spec.

ioco	Test-Case	
Generator

(UPPAAL	TRON)
a0

1
a b c

idle

Next

Switch	Impl.

Adaptor

Test	Result:
pass	or	fail	

(+	counterexample)

Coverage	Metrics
(Cobertura)

93Pasargad	School	2018

Testing	
Ecosystem

cb

a

Switch	Spec.

Test-Case	Generator
(Uppaal Yggdrasil,
Torxakis,
QuickCheck,
RT	Tester,	
Axini,	
SpecExplorer,
EyeAutomate)

a0
1

a b c
idle

Next

Switch	Impl.

Adaptor

Test	Results	
(+	counterexample)

Coverage	Metrics

Traceability
Information

Test	DB

94

Testing	Ecosystem	
(anno	2018)

Measuring	Coverage
Using	Cobertura code	coverage	tool	
(now	use	EclEmma)

What	about	model-based	coverage?

95Pasargad	School	2018

Logging	Offline	Test	Suite

• The	adaptor	logs	the	messages	from	TRON
• Prioritization	based	on	coverage
• Used	for	regression	testing

ioco	Test-Case	
Generator

(UPPAAL	TRON)

Adaptor

Offline	
Test	Suite

96Pasargad	School	2018

Testing	
Ecosystem

cb

a

Switch	Spec.

ioco	Test-Case	
Generator

(UPPAAL	TRON)
a0

1
a b c

idle

Next

Switch	Impl.

Adaptor

Test	Result:
pass	or	fail	

(+	counterexample)

Coverage	Metrics
(Cobertura)

Offline	
Test	Suite

Test	DB

97Pasargad	School	2018

Testing	Business	Rules

98

AdaptorTRON Switch

purchase	req(amnt,	…)

purchase	req(amnt,	…)

purchase	resp(amnt,	…)

remember	
req.	amount

purchase	resp(amnt,	…)

validate	resp.	
amount

Pasargad	School	2018

Results

• Have	found	a	number	of bugs	in	the	
operational	system
– One	traced	back	to	null-pointer dereferencing
– Poor	exception handling

• Code	coverage of	about	40%

99Pasargad	School	2018

Observations

• Modeling	language	and	tool	limitations
– Component (de-compositional)	testing	
– Asynchrony
– Data specification	and	selection
– Variability	

• Scalability Issues
– Running	concurrent MBT	instances
– Reducing	buffer	lengths,	pool	sizes,	etc.

100Pasargad	School	2018

Further	Reading

• Asaadi,	Khosravi,	MRM,	and	Noroozi.	Towards	
Model-Based	Testing	of	Electronic	Funds	
Transfer	Systems.	Proc.	of	FSEN	2011.	
Models	publicly	available	on	Assembla.

• Vishal,	Kovacioglu,	Kherazi,	and	MRM.	
Integrating	Model-Based	and	Constraint-
Based	Testing	Using	SpecExplorer.	Proc.	of	
MoTiP 2012.	

101Pasargad	School	2018

Back	to	Theory:

Component	Testing

Pasargad	School	2018 102

Decompositional	Testing

S e
e

e
c

Pasargad	School	2018

Decompositional	Testing

S e
e

e

S/e

for all c, (c || e) ioco s iff c ioco S/e

Pasargad	School	2018

Decompositional properties

1. Decomposability

2.	Strong	decomposability	

Decompositional	Testing
for all c, (c || e) ioco s iff c ioco S/e

Construction of S/e:

• Check:
Can S be the composition of e with some c?

• Filter out the behavior of e in S

Pasargad	School	2018

Further	Reading

Noroozi,	MRM,	and	Willemse.	Decomposability	
in	Input	Output	Conformance	Testing.	Proc. of	
MBT	2013.

108Pasargad	School	2018

Back	to	Theory:

Asynchrony

Pasargad	School	2018 109

Asynchronous	Communication

PAGE		Pasargad	School	2018

Synchronous	Communication

Pasargad	School	2018 PAGE	111

Synchronous	Communication

Pasargad	School	2018 PAGE	112

Asynchronous	Communication

Pasargad	School	2018 PAGE	113

Prior	Art	[Tretmans&Verhaard’92]

|| ||

Test

execution

ioco

test case

generation

Pasargad	School	2018 114

Test

execution

ioco

test case

generation

State	of	the	Art	
[Petrenko&Yevtushenko’02,03][Simao&Petrenko’10]

PAGE		

|| ||

ioco
test case

generation

Pasargad	School	2018

State	of	the	Art		[Weiglhofer&Wotawa’09]

PAGE		

Test

execution

|| ||

ioco

test case

generation

ioco

test case

generation

Pasargad	School	2018

What	we	are	after

PAGE		

|| ||

Test

execution

ioco

test case

generation

Pasargad	School	2018

Delayed	Traces

PAGE		

Trace:	

tester

test cases
scenarios

Money?

Refund!

Button?

money? refund! button?

Money?

Refund!

Button?

Pasargad	School	2018

Delayed	Traces
Trace:	

tester

test cases
scenarios

Refund!

Money?button?

money? refund!button?

Money?

Refund!

button?

Pasargad	School	2018 119

Delayed	right-closed	IOTS

PAGE		

Delay right-closed IOTS, S is an IOTS such that
∀σ∈ Straces (S) then delayed trace of σ∈ Straces (S)

σ.x.a∈ Straces (S) then σ.a.x∈ Straces (S)

Pasargad	School	2018

Theorems
Theorem

If implementation i is delay right-closed, then

i ioco Spec if and only if Q(i) ioco Spec

Theorem

If ∀t∈ TestCases (S), i passes t if and only if Q(i) passes t

then

implementation i is delay right-closed IOTS

Pasargad	School	2018 121

Further	Reading

Noroozi,	Khosravi,	MRM,	and	Willemse.	
Synchrony	and	Asynchrony	in	Conformance	
Testing.	 SoSym J.,	2015.	

122Pasargad	School	2018

123Pasargad	School	2018

Thank	You	Very	Much!

mm789@le.ac.uk

124

