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This presentation is based on the following papers:

• ”Program Evaluation and Causal Inference with High-Dimensional
Data”, ArXiv 2013, Econometrica 2016+

with Alexandre Belloni, I. Fernandez-Val, Christian Hansen

• ”Double Machine Learning for Causal and Treatment Effects”

ArXiv 2016,with Denis Chetverikov, Esther Duflo, Christian
Hansen, Mert Demirer, Whitney Newey



Introduction

• Main goal: Provide general framework for estimating and doing inference
about a low-dimensional parameter (θ0) in the presence of high-dimensional
nuisance parameter (η0) which may be estimated with the new generation of
nonparametric statistical methods, branded as “machine learning” (ML)
methods, such as

• random forests,
• boosted trees,
• lasso,
• ridge,
• deep and standard neural nets,
• gradient boosting,
• their aggregations,
• and cross-hybrids.



Machine Learning



Introduction

• We build upon/extend the classic work in semiparametric estimation which focused

on ”traditional” nonparametric methods for estimating η0, e.g. Bickel, Klassen,

Ritov, Wellner (1998), Andrews (1994), Linton (1996), Newey (1990, 1994), Robins

and Rotnitzky (1995), Robinson (1988), Van der Vaart(1991), Van der Laan and

Rubin (2008), many others. Theoretical analysis here requires the estimators to

take values in a Denser set, which really rules out most of the new methods.



Literature

• Lots of recent work on inference based on lasso-type methods
• e.g. Belloni, Chen, Chernozhukov, and Hansen (2012); Belloni, Chernozhukov,

Fernández-Val, and Hansen (2015); Belloni, Chernozhukov, and Hansen (2010,
2014); Belloni, Chernozhukov, Hansen, and Kozbur (2015); Belloni,
Chernozhukov, and Kato (2013a, 2013b); Belloni, Chernozhukov, and Wei
(2013); Farrell (2015); Javanmard and Montanari (2014); Kozbur (2015); van
de Geer, Bühulmann, Ritov, and Dezeure (2014); Zhang and Zhang (2014)

• Little work on other ML methods, with exceptions, e.g., Chernozhukov,
Hansen, and Spindler (2015) and Athey and Wager (2015);

• Will build on the general framework in Chernozhukov, Hansen, and Spindler
(2015)



Two main points:

I. The ML methods seem remarkably effective in prediction contexts.
However, good performance in prediction does not necessarily
translate into good performance for estimation or inference about
“causal” parameters. In fact, the performance can be poor.

II. By doing ”double” ML or “orthogonalized” ML, and sample splitting,
we can construct high quality point and interval estimates of ”causal”
parameters.
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Main Points via a Partially Linear Model

Illustrate the two main points in a canonical example:

Y = Dθ0 + g0(Z ) + U, E[U | Z ,D ] = 0,

• Y - outcome variable

• D - policy/treatment variable
• θ0 is the target parameter of interest

• Z is a high-dimensional vector of other covariates, called “controls” or
“confounders”

Z are confounders in the sense that

D = m0(Z ) + V , E[V | Z ] = 0

where m0 6= 0, as is typically the case in observational studies.



Point I. “Naive” or Prediction-Based ML Approach is Bad

• Predict Y using D and Z – and obtain

D θ̂0 + ĝ0(Z )

• For example, estimate by alternating minimization– given initial guesses, run
Random Forest of Y −D θ̂0 on Z to fit ĝ0(Z ) and the Ordinary Least

Squares on Y − ĝ0(Z ) on D to fit θ̂0; Repeat until convergence.

• Excellent prediction performance! BUT the distribution of θ̂0 − θ0 looks like
this:



Quick Background

Quick Reminder. Random forest is a linear combination of regression trees, each
of which represents a recursive binary partitioning of the regressor space into bins,
which are used to build predictions. One of the most successful ML techniques.
Example. A regression tree of depth 2 for predicting wage using education
experience, and other characteristics.



Point II. The “Double” ML Approach is Good

1. Predict Y and D using Z by

Ê[Y |Z ] and Ê[D |Z ],
obtained using the Random Forest or other ”best performing ML” tools.

2. Residualize Ŵ = Y − Ê[Y |Z ] and V̂ = D − Ê[D |Z ]
3. Regress Ŵ on V̂ to get θ̌0.
• Frisch-Waugh-Lovell (1930s) style. The distribution of θ̌0 − θ0 looks like this:



Moment conditions

The two strategies rely on very different moment conditions for identifying and
estimating θ0:

E[(Y −Dθ0 − g0(Z ))D ] = 0 (1)

E[(Y −Dθ0)(D − E [D |Z ])] = 0 (2)

E[((Y − E [Y |Z ])− (D − E [D |Z ])θ0)(D − E [D |Z ])] = 0 (3)

• (1) - Regression adjustment;

• (2) - “propensity score adjustment”

• (3) - Neyman-orthogonal (semi-parametrically efficient under
homoscedasticity).

Both approaches generate estimators of θ0 that solve the empirical analog of the
moment conditions above, where instead of unknown nuisance functions

g0(Z ), m0(Z ) := E[D |Z ], `0(Z ) = E[Y |Z ]

we plug-in their ML-based estimators, obtained using a set-aside sample.



“Naive” or ”Prediction-focused” ML Estimation from (1)

Suppose we use (1) with an estimator ĝ0(Z ) to estimate θ0:
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• a N(0, Σ̄) under standard conditions

• What about b?



Estimation Error in Nuisance Function

Will generally have b → ∞:

b ≈ (ED2)−1 1√
n

n

∑
i=1

m0(Zi ) (g0(Zi )− ĝ0(Zi ))

(g0(Zi )− ĝ0(Zi )) error in estimating g0

Heuristics:

• In nonparametric setting, the error is of order n−ϕ for 0 < ϕ < 1/2

• b will then look like
√
nn−ϕ → ∞

The “naive” or prediction-focused ML estimator θ̂0 is not root-n consistent

Similar heuristics would apply to estimation with (2)



Orthogonalized or ”Double ML” Formulation

Consider estimation based on (3)
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• V̂ = D − m̂0(Z ), Ŵ = Y − ̂̀0(Z ),

Under mild conditions, can write
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Heuristic Convergence Properties

• a∗  N(0, Σ) under standard conditions

• b∗ now depends on product of estimation errors in both nuisance functions

• b∗ will look like
√
nn−(ϕm+ϕ`) where n−ϕm and n−ϕ` are respectively

appropriate convergence rates of estimators for m(z) and `(z)

• o(n−1/4) is often an attainable rate for estimating m(z) and `(z)

The Double ML estimator θ̌0 is a
√
n consistent and approximately centered

normal quite generally.

We also rely on sample splitting to get the third term to be op(1), with only

the rate restrictions like o(n−1/4) on the performance of ML estimators.

This eliminates conditions on the entropic complexity of realizations of ML
estimators.
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Why Sample Splitting?

In the expansion

√
n(θ̌0 − θ0) = a∗ + b∗ + op(1)

the term op(1) contains terms like(
1

n
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∑
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∑
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Ui (m0(Zi )− m̂(Zi ))

• With sample splitting, easy to control and claim op(1).

• Without sample splitting, hard to control and claim op(1).

• See ”Program Evaluation... ” (Econometrica, 2016+) for results
without sample splitting.



Why Sample Splitting?

Technical Remark. Without sample splitting, need maximal inequalities to control

sup
m∈Mn

∣∣∣ 1√
n

n

∑
i=1

Ui (m0(Zi )−m(Zi ))
∣∣∣

where Mn 3 m̂ with probability going to 1, and need to control the entropy of Mn,
which typically grows in modern high-dimensional applications. In particular, the
assumption that Mn is P-Donsker used in semi-parametric literature does not
apply.



Key Difference between (1) and (3) is Neyman
Orthogonality

• Key difference between estimation based on (1) and estimation based on (3)
is that (3) satisfies the Neyman orthogonality condition:

Let
η0 = (`0,m0) = (E[Y |Z ], E[D |Z ]) , η = (`,m).

The Gateaux derivative operator of the moment condition (3) with respect to
η vanishes:

∂ηE[((Y − `(Z ))− (D −m(Z )))θ0)(D −m(Z ))]︸ ︷︷ ︸
ψ(W ,θ0,η)

∣∣∣
η=η0

= 0

• Heuristically, the moment condition remains ”valid” under “local” mistakes in
the nuisance function.

• In sharp contrast, this property generally does not hold for the moment
condition (1) for nuisance function g .
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General Results for Moment Condition Models

Moment conditions model:

E[ψj (W , θ0, η0)] = 0, j = 1, . . . , dθ (4)

• ψ = (ψ1, . . . , ψdθ
)′ is a vector of known score functions

• W is a random element; observe random sample (Wi )
N
i=1 from the

distribution of W

• θ0 is the low-dimensional parameter of interest

• η0 is the true value of the nuisance parameter η ∈ T for some convex set T
equipped with a norm ‖ · ‖e (can be a function or vector of functions)



Key Ingredient I: Neyman Orthogonality Condition

Key orthogonality condition:

ψ = (ψ1, . . . , ψdθ
)′ obeys the orthogonality condition with respect to T ⊂ T if

the Gateaux derivative map

Dr ,j [η − η0] := ∂r

{
EP

[
ψj (W , θ0, η0 + r(η − η0))

]}

• exists for all r ∈ [0, 1), η ∈ T , and j = 1, . . . , dθ

• vanishes at r = 0: For all η ∈ T and j = 1, . . . , dθ,

∂ηEPψj (W , θ0, η)
∣∣∣
η=η0

[η − η0] := D0,j [η − η0] = 0.

Heuristically, small deviations in nuisance functions do not invalidate moment
conditions.



Key Ingredient II: Sample Splitting

Results will make use of sample splitting:

• {1, ...,N} = set of all observations;

• I= main sample = set of observation numbers, of size n, is used to estimate
θ0;

• I c = auxilliary sample = set of observations, of size πn = N − n, is used to
estimate η0;

• I and I c form a random partition of the set {1, ...,N}

Use of sample splitting allows to get rid of ”entropic” requirements and boil
down requirements on ML estimators η̂ of η0 to just rates.



Theory: Regularity Conditions for General Framework

Denote

J0 := ∂θ′

{
EP [ψ(W , θ, η0)]

}∣∣∣
θ=θ0

Let ω, c0, and C0 be strictly positive (and finite) constants, n0 > 3 be a positive
integer, and (B1n)n>1 and (B2n)n>1 be sequences of positive constants, possibly
growing to infinity, with B1n > 1 for all n > 1.

Assume for all n > n0 and P ∈ Pn

• (Parameter not on boundary) θ0 satisfies (4), and Θ contains a ball of radius
C0n

−1/2 log n centered at θ0

• (Differentiability) The map (θ, η) 7→ EP [ψ(W , θ, η)] is twice continuously
Gateaux-differentiable on Θ× T

• Does not require ψ to be differentiable

• (Neyman Orthogonality) ψ obeys the orthogonality condition for the set
T ⊂ T



Theory: Regularity Conditions on Model (Continued)

• (Identifiability) For all θ ∈ Θ, we have
‖EP [ψ(W , θ, η0)]‖ > 2−1‖J0(θ − θ0)‖ ∧ c0 where the singular values of J0

are between c0 and C0

• (Mild Smoothness) For all r ∈ [0, 1), θ ∈ Θ, and η ∈ T
• EP [‖ψ(W , θ, η)− ψ(W , θ0, η0)‖2] 6 C0(‖θ − θ0‖ ∨ ‖η − η0‖e )ω

• ‖∂rEP [ψ(W , θ, η0 + r(η − η0))] ‖ 6 B1n‖η − η0‖e
• ‖∂2

r EP [ψ(W , θ0 + r(θ − θ0), η0 + r(η − η0))]‖ 6 B2n(‖θ − θ0‖2 ∨ ‖η − η0‖2
e )



Theory: Conditions on Estimators of Nuisance Functions

Second key condition is that nuisance functions are estimated “well-enough”:

Let (∆n)n>1 and (τπn)n>1 be some sequences of positive constants converging to
zero, and let a > 1, v > 0, K > 0, and q > 2 be constants.

Assume for all n > n0 and P ∈ Pn

• (Estimator and Truth) (i) w.p. at least 1− ∆n, η̂0 ∈ T and (ii) η0 ∈ T .
• Recall that “parameter space” for η is T

• (Convergence Rate) For all η ∈ T , ‖η − η0‖e 6 τπn



Theory: Conditions on Estimators of Nuisance Functions
(Continued)

• (Pointwise Entropy) For each η ∈ T , the function class
F1,η = {ψj (·, θ, η) : j = 1, ..., dθ, θ ∈ Θ} is suitably measurable and its
uniform entropy numbers obey

sup
Q

logN(ε‖F1,η‖Q,2,F1,η, ‖ · ‖Q,2) 6 v log(a/ε), for all 0 < ε 6 1

where F1,η is a measurable envelope for F1,η that satisfies ‖F1,η‖P,q 6 K

• (Moments) For all η ∈ T and f ∈ F1,η, c0 6 ‖f ‖P,2 6 C0

• (Rates) τπn satisfies (a) n−1/2 6 C0τπn, (b)
(B1nτπn)ω/2 + n−1/2+1/q 6 C0δn, and (c) n1/2B2

1nB2nτ2
πn 6 C0δn.

Rate of convergence is τπn - needs to be faster than n−1/4

• Same as rate condition widely used in semiparametrics employing classical
nonparametric estimators



Theory: Main Theoretical Result

Let ”Double ML” or ”Orthogonalized ML” estimator

θ̌0 = θ̌0(I , I
c )

be such that∥∥∥En,I [ψ(W , θ̌0, η̂0)
∥∥∥ 6 inf

θ∈Θ

∥∥∥En,I [ψ(W , θ, η̂0)]
∥∥∥+ εn, εn = o(δnn

−1/2)

Theorem (Main Result)

Under assumptions stated above, θ̌0 obeys

√
nΣ−1/2

0 (θ̌0 − θ0) =
1√
n

∑
i∈I

ψ̄(Wi ) +OP (δn) N(0, I ),

uniformly over P ∈ Pn, where ψ̄(·) := −Σ−1/2
0 J−1

0 ψ(·, θ0, η0) and

Σ0 := J−1
0 EP [ψ

2(W , θ0, η0)](J
−1
0 )′.



Theory: Attaining full efficiency

• full efficiency not obtained, but

Corollary

Can do a random 2-way split with π = 1, obtain estimates θ̌0(I , I
c ) and θ̌0(I

c , I )
and average them

ˇ̌θ0 =
1

2
θ̌0(I , I

c ) +
1

2
θ̌0(I

c , I )

to gain full efficiency.

Corollary

Can do also a random K-way split (I1, ..., IK ) of {1, ...,N}, so that π = (K − 1),
obtain estimates θ̌0(Ik , I ck ), for k = 1, ...,K , and average them

ˇ̌θ =
1

K

K

∑
k=1

θ̌0(Ik , I ck )

to gain full efficiency.



Theory: Extensions to ”Quasi” Splitting

• Given the split (I , I c ), it is tempting to use I c to build a collection of ML
estimators

η̂m(I
c ), m = 1, ...,M

for the nuisance parameters η, and then pick the winner η̂m(I )(I
c ) based

upon I . This does break the sample-splitting.

• The results still go through under the condition that the winning method has
the rate τπn such that

τπn

√
logM → 0.

• The entropy is back, but in a gentle,
√

logM way.



Details: Estimating Equations in Parametric Likelihood
Example

Can generally construct moment/score functions with desired orthogonality
property building upon classic ideas of, e.g., Neyman (1979)

Illustrate in parametric likelihood case.

Suppose log-likelihood function is given by `(W , θ, β)

• θ d-dimensional parameter of interest

• β p0-dimensional nuisance parameter

Under regularity, true parameter values satisfy

E[∂θ`(W , θ0, β0)] = 0, E[∂β`(W , θ0, β0)] = 0

ϕ(W , θ, β) = ∂θ`(W , θ, β) in general does not possess the orthogonality property



Details: Orthogonal Estimating Equations in Parametric
Likelihood Model

Can construct new estimating equation with desired orthogonality property:

ψ(W , θ, η) = ∂θ`(W , θ, β)− µ∂β`(W , θ, β),

• Nuisance parameter: η = (β′, vec(µ)′)′ ∈ T ×D ⊂ Rp, p = p0 + dp0

• µ is the d × p0 orthogonalization parameter matrix

• True value (µ0) solves Jθβ − µJββ = 0 (i.e., µ0 = JθβJ
−1
ββ ) for

J =

(
Jθθ Jθβ

Jβθ Jββ

)
= ∂(θ′,β′)E

[
∂(θ′,β′)′ `(W , θ, β)

]∣∣∣
θ=θ0; β=β0

• Will have E[ψ(W , θ0, η0)] = 0 for η0 = (β′0, vec(µ0)
′)′ (provided µ0 is

well-defined)

• Importantly, ψ obeys the orthogonality condition: ∂ηE[ψ(W , θ0, η)]
∣∣∣
η=η0

= 0

• ψ is the efficient score for inference about θ0



Details: General Construction of Orthogonal Moment
Conditions/Estimating Equations

More generally, can construct orthogonal estimating equations as in the
semiparametric estimation literature

For example, can proceed by projecting score/moment function onto
orthocomplement of tangent space induced by nuisance function

• E.g. Chamberlain (1992), van der Vaart (1998), van der Vaart and Wellner
(1996))

Orthogonal scores/moment functions will often have nuisance parameter η
that is of higher dimension than “original” nuisance function β.

• Also see in partially linear model where nuisance parameter in orthogonal
moment conditions involve two conditional expectations



Example 1. ATE in Partially Linear Model

Recall

Y = Dθ0 + g0(Z ) + ζ, E[ζ | Z ,D ] = 0,

D = m0(Z ) + V , E[V | Z ] = 0.

Base estimation on orthogonal moment condition

ψ(W , θ, η) = ((Y − `(Z )− θ(D −m(Z )))(D −m(Z )), η = (`,m).

Easy to see that

• θ0 is a solution to EPψ(W , θ0, η0) = 0

• ∂ηEPψ(W , θ0, η)
∣∣∣
η=η0

= 0



Example 2. ATE and ATT in the Heterogeneous
Treatment Effect Model

Consider a treatment D ∈ {0, 1}. We consider vectors (Y ,D,Z ) such that

Y = g0(D,Z ) + ζ, E[ζ | Z ,D ] = 0, (5)

D = m0(Z ) + ν, E[ν | Z ] = 0. (6)

The average treatment effect (ATE) is

θ0 = E[g0(1,Z )− g0(0,Z )].

The the average treatment effect for the treated (ATT)

θ0 = E[g0(1,Z )− g0(0,Z )|D = 1].

• The confounding factors Z affect the D via the propensity score m(Z ) and Y
via the function g0(D,Z ).

• Both of these functions are unknown and potentially complicated, and we can
employ Machine Learning methods to learn them.



Example 2 Contuned. ATE and ATT in the Heterogeneous
Treatment Effect Model

For estimation of the ATE, we employ

ψ(W , θ, η) := θ − D(Y − η2(Z ))

η3(Z )
− (1−D)(Y − η1(Z )))

1− η3(Z )
− (η1(Z )− η2(Z )),

η0(Z ) := (g0(0,Z ), g0(1,Z ),m0(Z ))
′,

(7)

where η(Z ) := (ηj (Z ))
3
j=1 is the nuisance parameter. The true value of this parameter is

given above by η0(Z ).
For estimation of ATT, we use the score

ψ(W , θ, η) =
D(Y − η2(Z ))

η4
− η3(Z )(1−D)(Y − η1(Z ))

(1− η3(Z ))η4
+

D(η2(Z )− η1(Z ))

η4
− θ

D

η4
,

η0(Z ) = (g0(0,Z ), g0(1,Z ),m0(Z ), E[D ])′,
(8)



Example 2 Continued. ATE and ATT in the
Heterogeneous Treatment Effect Model

It can be easily seen that true parameter values θ0 for ATT and ATE obey

EPψ(W , θ0, η0) = 0,

for the respective scores and that the scores have the required orthogonality
property:

∂ηEPψ(W , θ0, η)
∣∣∣
η=η0

= 0.

We use ML methods to obtain:

η̂0(Z ) := (ĝ0(0,Z ), ĝ0(1,Z ), m̂0(Z ))
′,

η̂0(Z ) = (ĝ0(0,Z ), ĝ0(1,Z ), m̂0(Z ), En[D ]).

The resulting “double ML” estimator θ̌0 solves the empirical analog:

En,I ψ(W , θ̌0, η̂0) = 0, (9)

and the solution θ̌0 can be given explicitly since the scores are affine with respect
to θ.



Example 3. LATE and LATTE in Heterogeneous
Treatment Effect Models

• LATE can be written as a ratio of ATE of a binary instrument on D and Y ,
so can use Example 2 to estimate each piece.

• Similar construction works for LATTE.

• By defining Y ∗ = 1(Y 6 t) can study Distributional and Quantile Treatment
Effects.

• See ”Program Evaluation ...” paper for details.



Example 4. Moment Condition Models

Very common framework in structural econometrics.

• See Chernozhukov, Hansen, Spindler ARE, 2015 for parametric case

• See ”Program Evaluation ...” (Econometrics, 2016) for semi-parametric case.



Empirical Example: 401(k) Pension Plan

Follow Poterba et al (97), Abadie (03). Data from 1991 SIPP, n = 9, 915

• Y is net total financial assets or total wealth

• D is indicator for working at a firm that offers a 401(k) pension plan

• Z includes age, income, family size, education, and indicators for married,
two-earner, defined benefit pension, IRA participation, and home ownership

D is plausibly exogenous at the time when 401(k) was introduced

Controlling for Z is important due to 401(k) mostly offered by firms employing
mostly workers from middle and above middle class (Poterba, Venti, and Wise 94,
95, 96, 01)



Empirical Example: 401(k)

Table: Estimated ATE of 401(k) Eligibility on Net Financial Assets

RForest PLasso B-Trees Nnet BestML
A. Part. Linear Model

ATE 8845 8984 8612 9319 8922
(1317) (1406) (1338) (1352) (1203)

B. Interactive Model

ATE 8133 8734 8405 7526 8295
(1483) (1168) ( 1193) (1327) (1162)

Estimated ATE and heteroscedasticity robust standard errors (in parentheses) from a linear model (Panel B)

and heterogeneous effect model (Panel A) based on orthogonal estimating equations. Column labels denote the

method used to estimate nuisance functions. Further details about the methods are provided in the main text.



Concluding Comments

Our results provide a general set of results that allow
√
n-consistent estimation

and provably valid (asymptotic) inference for causal parameters, using a wide class
of flexible (ML, nonparametric) methods to fit the nuisance parameters.

Three key elements:

1. Neyman-Orthogonal estimating equations

2. Fast enough convergence of estimators of nuisance quantities

3. Sample splitting
• Really eliminates requirements on the entropic complexity on the realizations

of η̂
• Allows establishment of results using only rate conditions, not exploiting

specific structure of ML estimators (as in, e.g., results for inference following
lasso-type estimation in full-sample)



Thank you!
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