

ACTUAL CAUSALITY AND COUNTERFACTUAL REASONING

MOHAMMAD MOUSAVI SCHOOL OF INFORMATICS

Ulalaama haaki

CAUSALITY: BACKGROUND

Actual Causality and Counterfactuals TeIAS, November 2020 2 / 23

A Railway Crossing Hazard

Safety goal:

• "It shall always be the case that there is never a car and a train in crossing at the same time"

What is a Cause?

[Lewis 1973] "Causation". Journal of Philosophy (1973)

- possible world semantics for counterfactuals
 - c is causal for e (in a model m), if were c not to occur, then e would not occur either

What is a Cause?

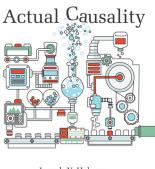
[Lewis 1973] "Causation". Journal of Philosophy (1973)

- possible world semantics for counterfactuals
 - $\bullet\,\,c$ is causal for e (in a model m), if were c not to occur, then e would not occur either

[Halpern, Pearl 2005] "<u>Causes and explanations: A structural-model</u> approach. Part I: <u>Causes</u>". The British Journal for the Philosophy of Science (2005)

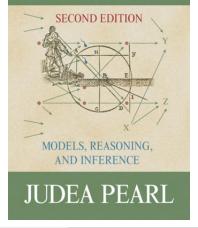
What is a Cause?

[Lewis 1973] "Causation". Journal of Philosophy (1973)


- possible world semantics for counterfactuals
 - $\bullet\,\,c$ is causal for e (in a model m), if were c not to occur, then e would not occur either

[Halpern, Pearl 2005] "<u>Causes and explanations: A structural-model</u> approach. Part I: <u>Causes</u>". The British Journal for the Philosophy of Science (2005)

[Leitner-Fischer, Leue 2013] "Causality Checking for Complex System Models". VMCAI (2013)


- adaptation of [Halpern, Pearl 2005] to concurrent computations and reachability properties
- considers ordering and non-occurrence of events as potential causal factors

Textbooks

Joseph Y. Halpern

CAUSALITY

Our Order of Business

Formalising a notion of causality for reactive systems

Studying its compositionality

Oiscussing the extension of causality for cyber-physical- and autonomous systems

CAUSALITY FOR REACTIVE SYSTEMS

Actual Causality and Counterfactuals TeIAS, November 2020 7 / 23

Labelled Transition Systems (LTS's)

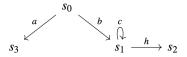
 $1 transitions: s_0 \xrightarrow{b} s_1$

Labelled Transition Systems (LTS's)

- $I transitions: s_0 \xrightarrow{b} s_1$
- 2 trace: $s_0 \xrightarrow{bcch} s_2$, ε trace

Labelled Transition Systems (LTS's)

- $I transitions: s_0 \xrightarrow{b} s_1$
- 2 trace: $s_0 \xrightarrow{bcch} s_2$, ε trace
- Omputations, e.g.,


 $traces(\pi) = \{$

Labelled Transition Systems (LTS's)

- $1 transitions: s_0 \xrightarrow{b} s_1$
- 2 trace: $s_0 \xrightarrow{bcch} s_2$, ε trace
- computations, e.g.,

 $traces(\pi) = \{$

Hennessy-Milner Logic

Hennessy-Milner Logic (HML). Syntax & Semantics.

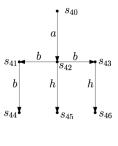
$$\phi, \psi ::= \top \mid \neg \phi \mid \phi \land \psi \mid \langle a \rangle \phi \qquad (a \in A).$$

 $\begin{array}{l} s \vDash \top & \text{for all } s \in \mathbb{S} \\ s \vDash \neg \phi & \text{whenever } s \text{ does not satisfy } \phi; \text{ also written as } s \nvDash \phi \\ s \vDash \phi \land \psi & \text{if and only if } s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \langle a \rangle \phi & \text{if and only if } s \xrightarrow{a} s' \text{ for some } s' \in \mathbb{S} \text{ such that } s' \vDash \phi \end{array}$

Causality for LTS's - AC1

Consider an LTS T and an HML property ϕ in T. $\pi = (s_0, l_0, \mathcal{D}_0), \dots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

1. Positive causality, AC1 $\,$


The causal trace leads to the effect: $s_0 \xrightarrow{l_0} \ldots s_n \xrightarrow{l_n} s_{n+1} \land s_{n+1} \vDash \phi$

Causality for LTS's – AC1

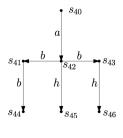
Consider an LTS T and an HML property ϕ in T. $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

1. Positive causality, AC1

The causal trace leads to the effect: $s_0 \xrightarrow{l_0} \ldots s_n \xrightarrow{l_n} s_{n+1} \land s_{n+1} \vDash \phi$

 $\phi = \langle h \rangle \top$ $\pi = (s_{40}, a, \mathcal{D}_{40}), s_{42}$

Causality for LTS's – AC2(a)


- $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:
 - 2. Counter-factual, AC2(a)

The effect does not hold trivially: $\exists \chi \in A^*, s' \in \mathbb{S} : s_0 \xrightarrow{\chi} s' \wedge s' \vDash \neg \phi$

Causality for LTS's – AC2(a)

- $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:
 - 2. Counter-factual, AC2(a)

The effect does not hold trivially: $\exists \chi \in A^*, s' \in \mathbb{S} : s_0 \xrightarrow{\chi} s' \wedge s' \vDash \neg \phi$

 $\phi = \langle h \rangle \top$ e.g., $\chi = abb$, $\chi = ah$

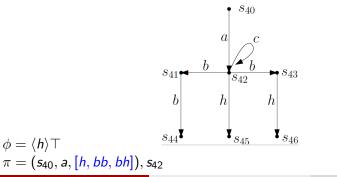
Causality of non-occurrence

- What if the car leaves (*Cl*) the crossing before the train enters the crossing?
 - *Cl* is causal by its non-occurrence...

Causality for LTS's – AC2(b)

 $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

3. Causality of occurrence, AC2(b) Interleaving "other actions" with the causal trace keeps the effect:

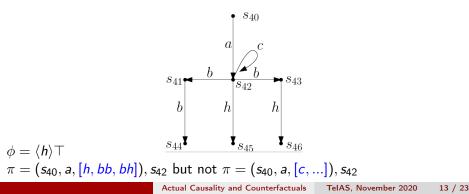

 $\begin{aligned} \forall \chi' &= l_0 \chi_0 \dots l_n \chi_n \in (A^* \setminus traces(\pi)) \cup \{l_0 \dots l_n\}, \\ s_0 \xrightarrow{\chi'} s' \Rightarrow s' \vDash \phi \end{aligned}$

Causality for LTS's – AC2(b)

 $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

3. Causality of occurrence, AC2(b) Interleaving "other actions" with the causal trace keeps the effect:

 $\forall \chi' = I_0 \chi_0 \dots I_n \chi_n \in (A^* \setminus traces(\pi)) \cup \{I_0 \dots I_n\},$ $s_0 \xrightarrow{\chi'} s' \Rightarrow s' \vDash \phi$



Causality for LTS's – AC2(b)

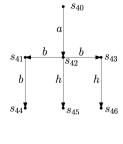
 $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

3. Causality of occurrence, AC2(b) Interleaving "other actions" with the causal trace keeps the effect:

 $\forall \chi' = I_0 \chi_0 \dots I_n \chi_n \in (A^* \setminus traces(\pi)) \cup \{I_0 \dots I_n\},$ $s_0 \xrightarrow{\chi'} s' \Rightarrow s' \vDash \phi$

Causality for LTS's - AC2(c)

- $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:
 - 4. Causality of non-occurrence, AC2(c) Interleaving "preventive actions" will remove the effect:
 - $\forall \chi' \in (traces(\pi) \setminus \{l_0 \dots l_n\}), \, s' \in \mathbb{S}:$ $s_0 \xrightarrow{\chi'} s' \Rightarrow s' \vDash \neg \phi$


Causality for LTS's - AC2(c)

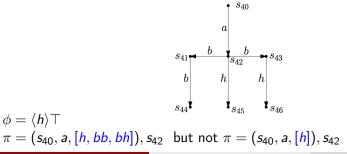
 $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

4. Causality of non-occurrence, AC2(c) Interleaving "preventive actions" will remove the effect:

$$\forall \chi' \in (traces(\pi) \setminus \{l_0 \dots l_n\}), \, s' \in \mathbb{S} :$$

$$s_0 \xrightarrow{\chi'} s' \Rightarrow s' \vDash \neg \phi$$

 $\phi = \langle h \rangle \top$ $\pi = (s_{40}, a, [h, bb, bh]), s_{42}$

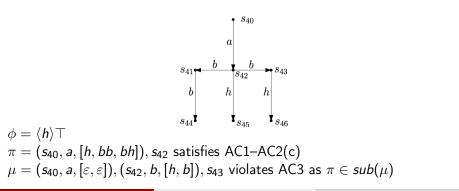

Causality for LTS's – AC2(c)

 $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

4. Causality of non-occurrence, AC2(c) Interleaving "preventive actions" will remove the effect:

$$\forall \chi' \in (traces(\pi) \setminus \{l_0 \dots l_n\}), \, s' \in \mathbb{S} :$$

$$s_0 \xrightarrow{\chi'} s' \Rightarrow s' \vDash \neg \phi$$



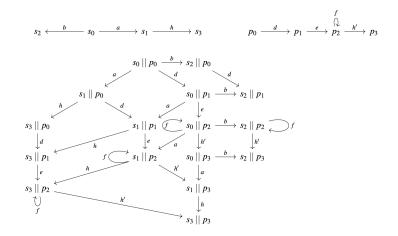
Causality for LTS's – AC3

Consider an LTS T and an HML property ϕ in T. $\pi = (s_0, l_0, \mathcal{D}_0), \ldots, (s_n, l_n, \mathcal{D}_n), s_{n+1} \in Causes(\phi, T)$ iff:

5. Minimality, AC3

 $\forall \pi' \in sub(\pi) : \pi' \text{ does not satisfy AC1-AC2(c)}$

DECOMPOSING CAUSALITY


Actual Causality and Counterfactuals TeIAS, November 2020 16 / 23

Composing LTS's

$$\frac{s \xrightarrow{a} s'}{s \mid\mid p \xrightarrow{a} s' \mid\mid p} \qquad \frac{p \xrightarrow{a} p'}{s \mid\mid p \xrightarrow{a} s \mid\mid p'}$$
$$\frac{s \xrightarrow{a} s'}{s + p \xrightarrow{a} s'} \qquad \frac{p \xrightarrow{a} p'}{s + p \xrightarrow{a} p'}$$

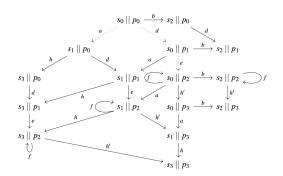
(De-)Composing Causality

From causality in $s_0 \parallel p_0$ to causality in s_0 and/or p_0 ?

Causal Projection

Consider an LTS T and an HML property ϕ in T. $T \downarrow \phi$ (or $s_0 \downarrow \phi$): causal projection of T w.r.t. ϕ • e.g., $s_0 \downarrow \langle h \rangle \top$ and $p_0 \downarrow \langle h' \rangle \top$:

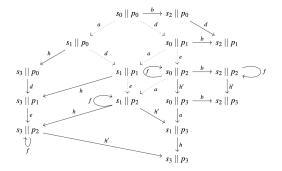
$$s_2 \xleftarrow{b} s_0 \xrightarrow{a} s_1 \xrightarrow{h} s_3 \qquad p_0 \xrightarrow{d} p_1 \xrightarrow{e} p_2 \xrightarrow{h'} p_3$$


(De-)Composing Disjunction

Consider LTS's $T = (\mathbb{S}, s_0, A, \rightarrow)$ and $T' = (\mathbb{S}', s'_0, B, \rightarrow')$ such that $A \cap B = \emptyset$. Assume two HML formulae ϕ and ψ over A and B, respectively. The following holds:

 $T \mid\mid T' \downarrow (\phi \lor \psi) \simeq T \downarrow \phi + T' \downarrow \psi.$

Example: $\langle h \rangle \top \lor \langle h' \rangle \top$


(De-)Composing Conjunction

Consider LTS's $T = (\mathbb{S}, s_0, A, \rightarrow)$ and $T' = (\mathbb{S}', s'_0, B, \rightarrow')$ such that $A \cap B = \emptyset$. Assume two HML formulae ϕ and ψ over A and B, respectively. The following holds:

 $T \mid\mid T' \downarrow (\phi \land \psi) = (T \downarrow \phi) \mid\mid (T' \downarrow \psi).$

Example: $\langle h \rangle \top \land \langle h' \rangle \top$

Conclusions & Future Work

Our contributions:

- defined causality for LTS's & HML (safety properties)
- established first compositionality results for non-communicating LTS's
- implemented in a model-checker (mCRL2)

Future work:

- extension to communicating LTS's (in the style of CCS)
- extension to liveness properties (in the modal μ -calculus)

[Caltais, Mousavi, and Singh, Causal Reasoning for Safety in HML, Fundamenta Informaticae, 2020]

THANK YOU VERY MUCH!

QUESTIONS?

mm789@le.ac.uk