
An operational guide to monitorability

Luca Aceto
ICE-TCS, Department of Computer Science, Reykjavik
University, and Gran Sasso Science Institute, L’Aquila

Tehran Institute for Advanced Studies
Cyberspace, 24 February 2021

Luca Aceto An operational guide to monitorability 1 / 15

General take-home message

Thou shalt

1 define notions of
monitorability in
terms of monitors,

2 view notions of
monitorability as a
spectrum, and

3 understand monitor
guarantees.

Luca Aceto An operational guide to monitorability 2 / 15

General take-home message (in Icelandic runes)

4 Luca Aceto et al.

Regular

∃PZ

∀PZ

Safe ∪ CoSafe

CoSafe Safe

Safe ∩ CoSafe

Sound

Informative

Satisfaction i. Violation i.

Persistently Informative

Satisfaction p. i. Violation p. i.

Partially complete

Satisfaction c. Violation c.

Complete

recHML

iHML

ciHML siHML

pHML

cpHML spHML

cHML ∪ sHML

cHML sHML

{tt,ff}

Fig. 1.1 The Monitorability Hierarchy of Regular Properties

monitorable properties can be further categorised into those informatively moni-
torable for violations and those informatively monitorable for satisfaction. More
stringent requirements can demand this capability to be invariant over monitor
executions, i.e., a monitor never reaches a state where it cannot provide a verdict;
then we speak of persistently informative monitors. Requiring a specific verdict to
always be reachable further refines this class into into persistently rejecting and
persistently accepting monitors. Adding completeness requirements of different
strengths, such as the requirement that a monitor should be able to identify all
failures and/or satisfactions, yields stronger definitions of monitorability: partial,
satisfaction or violation complete, and complete.

Our first contribution is to define this hierarchy of monitorability, depicted in
Fig. 1.1 (middle). In order not to favour a specific operational model, the hier-
archy is cast in terms of abstract behavioural requirements for monitors, and is
not restricted to regular properties. We then provide an instantiation that con-
cretises those requirements into an operational hierarchy, establishing operational
counterparts for each type of monitorability over regular properties. To this end,
we use the operational framework developed in [5], that uses finite-state monitors
and in which partial and complete monitorability were already defined. We show
this framework to be, in a suitable technical sense, maximally general (Thm. 4.4)
for regular properties. This shows that our work is equally applicable to other
operational models for monitoring regular properties.

In order for a tool to synthesise monitors from specifications, it is useful to have
syntactic characterisations of the properties that are monitorable with the required
guarantees: synthesis can then directly operate on the syntactic fragment. Our
second contribution is to provide monitorability characterisations as fragments of

Luca Aceto An operational guide to monitorability 2 / 15

Runtime monitoring in a nutshell
1.2 Background 3

High-Level Specification ϕ

x (correct) monitor synthesis

Monitorϕ e1 e2 e3 e4 e5 · · ·
execution trace

system events

System

3

?

7

satisfaction violation

inconclusive

runtime

design time

analyses exhibits

Figure 1.1 Runtime monitor synthesis and operational set-up.

lating to property violations and satisfactions, but may also include inconclusive verdicts for
when the exhibited execution trace does not permit any definite judgement in relation to the
property being monitored for [17, 26, 6, 19, 4]. A RV monitor for some correctness property
is typically synthesised automatically from a high-level specification that finitely describes
the property. Property specifications are given in terms of formal logics [4, 6, 7, 19] or other
formalisms such as regular expressions [20] or automata [5, 15, 29]. Figure 1.1 depicts
a correctness specification (denoted by ϕ) that is translated into an executable monitor,
Monitorϕ, and instrumented with the running system. Trace events are sequentially anal-
ysed by the monitor whenever these are generated by the system via the instrumentation
mechanism. Once the monitor reaches a verdict, it typically stops executing.

1.2.1 Runtime Monitoring Criteria

Monitor synthesis, i.e., the translation procedure from specifications to monitors and the
associated system instrumentation, should ideally provide some guarantees of correctness.
This covers both aspects that relate to how monitor verdicts correspond to the semantics
of the property being monitored for (e.g. a monitor trace rejection should correspond to
the system violating the property being monitored for), as well as requirements that the
monitors instrumented with the executing system under scrutiny do not introduce fresh bugs
themselves (consult our previous work [19, 21, 9, 18] for a detailed rendition on the subject).
Equally important is the efficiency with which monitors execute, as this can adversely affect
the monitored system or even alter its functional behaviour (e.g. slowdown due to inefficient
monitors might cause the system to violate time-dependent properties that would not have
been violated in the unmonitored system). A monitoring set-up that induces considerable
levels of performance overhead may be deemed too costly to be feasibly used in practice.

1.2.2 A Branching-Time Logic for Specifying Correctness Properties

Specification logics can be categorised into two classes. Linear-time logics [26, 6, 13] treat
time as having one possible future, and regard the behaviour of a system under observation
in terms of execution traces or paths. On the other hand, branching-time logics [1, 13] make
it possible to perceive time instances as potentially having more than one future, thereby
giving rise to a tree of possible execution paths that may be (non-deterministically) taken
by the executing system at runtime.

Assumption: Verdicts are irrevocable.

Luca Aceto An operational guide to monitorability 3 / 15

Runtime monitoring in a nutshell
1.2 Background 3

High-Level Specification ϕ

x (correct) monitor synthesis

Monitorϕ e1 e2 e3 e4 e5 · · ·
execution trace

system events

System

3

?

7

satisfaction violation

inconclusive

runtime

design time

analyses exhibits

Figure 1.1 Runtime monitor synthesis and operational set-up.

lating to property violations and satisfactions, but may also include inconclusive verdicts for
when the exhibited execution trace does not permit any definite judgement in relation to the
property being monitored for [17, 26, 6, 19, 4]. A RV monitor for some correctness property
is typically synthesised automatically from a high-level specification that finitely describes
the property. Property specifications are given in terms of formal logics [4, 6, 7, 19] or other
formalisms such as regular expressions [20] or automata [5, 15, 29]. Figure 1.1 depicts
a correctness specification (denoted by ϕ) that is translated into an executable monitor,
Monitorϕ, and instrumented with the running system. Trace events are sequentially anal-
ysed by the monitor whenever these are generated by the system via the instrumentation
mechanism. Once the monitor reaches a verdict, it typically stops executing.

1.2.1 Runtime Monitoring Criteria

Monitor synthesis, i.e., the translation procedure from specifications to monitors and the
associated system instrumentation, should ideally provide some guarantees of correctness.
This covers both aspects that relate to how monitor verdicts correspond to the semantics
of the property being monitored for (e.g. a monitor trace rejection should correspond to
the system violating the property being monitored for), as well as requirements that the
monitors instrumented with the executing system under scrutiny do not introduce fresh bugs
themselves (consult our previous work [19, 21, 9, 18] for a detailed rendition on the subject).
Equally important is the efficiency with which monitors execute, as this can adversely affect
the monitored system or even alter its functional behaviour (e.g. slowdown due to inefficient
monitors might cause the system to violate time-dependent properties that would not have
been violated in the unmonitored system). A monitoring set-up that induces considerable
levels of performance overhead may be deemed too costly to be feasibly used in practice.

1.2.2 A Branching-Time Logic for Specifying Correctness Properties

Specification logics can be categorised into two classes. Linear-time logics [26, 6, 13] treat
time as having one possible future, and regard the behaviour of a system under observation
in terms of execution traces or paths. On the other hand, branching-time logics [1, 13] make
it possible to perceive time instances as potentially having more than one future, thereby
giving rise to a tree of possible execution paths that may be (non-deterministically) taken
by the executing system at runtime.

Why runtime monitoring?

Runtime monitoring is

is lightweight and best effort,

is post-deployment,

can take advantage of hardware parallelism,

can be applied to systems with ML components, cloud
connectivity. . . .

Luca Aceto An operational guide to monitorability 3 / 15

Runtime monitoring in a nutshell
1.2 Background 3

High-Level Specification ϕ

x (correct) monitor synthesis

Monitorϕ e1 e2 e3 e4 e5 · · ·
execution trace

system events

System

3

?

7

satisfaction violation

inconclusive

runtime

design time

analyses exhibits

Figure 1.1 Runtime monitor synthesis and operational set-up.

lating to property violations and satisfactions, but may also include inconclusive verdicts for
when the exhibited execution trace does not permit any definite judgement in relation to the
property being monitored for [17, 26, 6, 19, 4]. A RV monitor for some correctness property
is typically synthesised automatically from a high-level specification that finitely describes
the property. Property specifications are given in terms of formal logics [4, 6, 7, 19] or other
formalisms such as regular expressions [20] or automata [5, 15, 29]. Figure 1.1 depicts
a correctness specification (denoted by ϕ) that is translated into an executable monitor,
Monitorϕ, and instrumented with the running system. Trace events are sequentially anal-
ysed by the monitor whenever these are generated by the system via the instrumentation
mechanism. Once the monitor reaches a verdict, it typically stops executing.

1.2.1 Runtime Monitoring Criteria

Monitor synthesis, i.e., the translation procedure from specifications to monitors and the
associated system instrumentation, should ideally provide some guarantees of correctness.
This covers both aspects that relate to how monitor verdicts correspond to the semantics
of the property being monitored for (e.g. a monitor trace rejection should correspond to
the system violating the property being monitored for), as well as requirements that the
monitors instrumented with the executing system under scrutiny do not introduce fresh bugs
themselves (consult our previous work [19, 21, 9, 18] for a detailed rendition on the subject).
Equally important is the efficiency with which monitors execute, as this can adversely affect
the monitored system or even alter its functional behaviour (e.g. slowdown due to inefficient
monitors might cause the system to violate time-dependent properties that would not have
been violated in the unmonitored system). A monitoring set-up that induces considerable
levels of performance overhead may be deemed too costly to be feasibly used in practice.

1.2.2 A Branching-Time Logic for Specifying Correctness Properties

Specification logics can be categorised into two classes. Linear-time logics [26, 6, 13] treat
time as having one possible future, and regard the behaviour of a system under observation
in terms of execution traces or paths. On the other hand, branching-time logics [1, 13] make
it possible to perceive time instances as potentially having more than one future, thereby
giving rise to a tree of possible execution paths that may be (non-deterministically) taken
by the executing system at runtime.

Key questions

1 When is a property monitorable? Characterizations?

2 What are monitors and what correctness guarantees do they
give?

3 Can one synthesize ‘correct’ monitors from properties?

Luca Aceto An operational guide to monitorability 3 / 15

A yardstick notion: Pnueli-Zaks monitorability (2006)

Setting: Properties of finite and infinite traces over a finite set
Act of actions. We let Trc = Act∗ ∪Actω.

Definition

A property P ⊆ Trc is s-monitorable, with s ∈ Act∗, if there is
some t ∈ Act∗ such that P is ‘positively or negatively determined
by st’.

Example

The property

/ now and eventually ,, or
eventually always ,

is s-monitorable for all strings that start with / and for the empty
string, but not for the others.

Luca Aceto An operational guide to monitorability 4 / 15

A yardstick notion: Pnueli-Zaks monitorability (2006)

Setting: Properties of finite and infinite traces over a finite set
Act of actions. We let Trc = Act∗ ∪Actω.

Definition

A property P ⊆ Trc is s-monitorable, with s ∈ Act∗, if there is
some t ∈ Act∗ such that P is ‘positively or negatively determined
by st’.

Our question

Where are the monitors?

Luca Aceto An operational guide to monitorability 4 / 15

Our motto: Bring back the monitors!

Take-home message (reloaded)

Monitorability comes in a spectrum!

Taking an operational view of monitorability, which defines it
in terms of monitors and their correctness guarantees, allows
us to develop a systematic theory of monitorability.

Luca Aceto An operational guide to monitorability 5 / 15

An operational guide to monitorability: Ingredients
1.2 Background 3

High-Level Specification ϕ

x (correct) monitor synthesis

Monitorϕ e1 e2 e3 e4 e5 · · ·
execution trace

system events

System

3

?

7

satisfaction violation

inconclusive

runtime

design time

analyses exhibits

Figure 1.1 Runtime monitor synthesis and operational set-up.

lating to property violations and satisfactions, but may also include inconclusive verdicts for
when the exhibited execution trace does not permit any definite judgement in relation to the
property being monitored for [17, 26, 6, 19, 4]. A RV monitor for some correctness property
is typically synthesised automatically from a high-level specification that finitely describes
the property. Property specifications are given in terms of formal logics [4, 6, 7, 19] or other
formalisms such as regular expressions [20] or automata [5, 15, 29]. Figure 1.1 depicts
a correctness specification (denoted by ϕ) that is translated into an executable monitor,
Monitorϕ, and instrumented with the running system. Trace events are sequentially anal-
ysed by the monitor whenever these are generated by the system via the instrumentation
mechanism. Once the monitor reaches a verdict, it typically stops executing.

1.2.1 Runtime Monitoring Criteria

Monitor synthesis, i.e., the translation procedure from specifications to monitors and the
associated system instrumentation, should ideally provide some guarantees of correctness.
This covers both aspects that relate to how monitor verdicts correspond to the semantics
of the property being monitored for (e.g. a monitor trace rejection should correspond to
the system violating the property being monitored for), as well as requirements that the
monitors instrumented with the executing system under scrutiny do not introduce fresh bugs
themselves (consult our previous work [19, 21, 9, 18] for a detailed rendition on the subject).
Equally important is the efficiency with which monitors execute, as this can adversely affect
the monitored system or even alter its functional behaviour (e.g. slowdown due to inefficient
monitors might cause the system to violate time-dependent properties that would not have
been violated in the unmonitored system). A monitoring set-up that induces considerable
levels of performance overhead may be deemed too costly to be feasibly used in practice.

1.2.2 A Branching-Time Logic for Specifying Correctness Properties

Specification logics can be categorised into two classes. Linear-time logics [26, 6, 13] treat
time as having one possible future, and regard the behaviour of a system under observation
in terms of execution traces or paths. On the other hand, branching-time logics [1, 13] make
it possible to perceive time instances as potentially having more than one future, thereby
giving rise to a tree of possible execution paths that may be (non-deterministically) taken
by the executing system at runtime.

Ingredients

A formal specification language (our work: a fixed-point
logic).

A model of system behaviour (our work: (finite and) infinite
traces, states in LTSs).

A formalism for writing monitors (our work: (extensions of
the) regular fragment of a CCS-like language/finite
automata).

Operational notions of instrumentation and monitorability.

Luca Aceto An operational guide to monitorability 6 / 15

Monitorability (operationally)

For a monitor m and a trace t,

acc(m, t)
def
= m reports , when processing t

rej(m, t)
def
= m reports / when processing t

Logic

t ∈ P
t 6∈ P

correspondence?←→ Monitoring

acc(m, t)
rej(m, t)

Correctness guarantees: The ideal setting

Soundness: Monitor m soundly monitors for P if ‘its verdicts
can always be trusted.’

Completeness: Monitor m is complete for P if ‘it provides all
the valid verdicts.’

Luca Aceto An operational guide to monitorability 7 / 15

Monitorability (operationally)

For a monitor m and a trace t,

acc(m, t)
def
= m reports , when processing t

rej(m, t)
def
= m reports / when processing t

Logic

t ∈ P
t 6∈ P

correspondence?←→ Monitoring

acc(m, t)
rej(m, t)

Correctness guarantees: The ideal setting

Soundness: Monitor m soundly monitors for P if ‘its verdicts
can always be trusted.’

Completeness: Monitor m is complete for P if ‘it provides all
the valid verdicts.’

Luca Aceto An operational guide to monitorability 7 / 15

Towards a monitorability hierarchy: Levels of completeness

Sound – everything has a sound monitor: ‘I don’t know’.

...

...

...

Sound and Complete – only trivial properties have a sound
and complete monitor: , for True, / for False.

Luca Aceto An operational guide to monitorability 8 / 15

A bit more than soundness

Definition (Informative monitors)

A monitor is informative if for some t, either acc(m, t) or rej(m, t).

With and without informative monitors

b./ is sound and informative for ‘always and forever a’.

The property ‘eventually always b’ has no sound and
informative monitor.

Definition (Informative monitorability)

A property is informatively monitorable if it has a sound and
informative monitor.

Luca Aceto An operational guide to monitorability 9 / 15

A bit more than soundness

Definition (Informative monitors)

A monitor is informative if for some t, either acc(m, t) or rej(m, t).

With and without informative monitors

b./ is sound and informative for ‘always and forever a’.

The property ‘eventually always b’ has no sound and
informative monitor.

Definition (Informative monitorability)

A property is informatively monitorable if it has a sound and
informative monitor.

Luca Aceto An operational guide to monitorability 9 / 15

A bit more than soundness

Definition (Informative monitors)

A monitor is informative if for some t, either acc(m, t) or rej(m, t).

With and without informative monitors

b./ is sound and informative for ‘always and forever a’.

The property ‘eventually always b’ has no sound and
informative monitor.

Definition (Informative monitorability)

A property is informatively monitorable if it has a sound and
informative monitor.

Luca Aceto An operational guide to monitorability 9 / 15

A bit more than soundness

Definition (Informative monitors)

A monitor is informative if for some t, either acc(m, t) or rej(m, t).

With and without informative monitors

b./ is sound and informative for ‘always and forever a’.

The property ‘eventually always b’ has no sound and
informative monitor.

Definition (Informative monitorability)

A property is informatively monitorable if it has a sound and
informative monitor.

Luca Aceto An operational guide to monitorability 9 / 15

Levels of completeness (take 2)

Sound – everything has a sound monitor: ‘I don’t know’.

Informative

...

...

Sound and Complete – only trivial properties have a sound
and complete monitor: , for True, / for False.

Luca Aceto An operational guide to monitorability 10 / 15

A weaker completeness

Definition (Violation completeness)

Monitor m is a violation-complete monitor for the property P, if
for all traces t ∈ Act∗ ∪Actω we have:

t 6∈ P implies rej(m, t).

Definition (Violation monitorability)

P is violation monitorable if it has a sound and violation-complete
monitor.

Satisfaction-complete monitors and satisfaction monitorability are
defined in the natural way.

Luca Aceto An operational guide to monitorability 11 / 15

A weaker completeness

Definition (Violation completeness)

Monitor m is a violation-complete monitor for the property P, if
for all traces t ∈ Act∗ ∪Actω we have:

t 6∈ P implies rej(m, t).

Definition (Violation monitorability)

P is violation monitorable if it has a sound and violation-complete
monitor.

Satisfaction-complete monitors and satisfaction monitorability are
defined in the natural way.

Luca Aceto An operational guide to monitorability 11 / 15

Completeness at work: Examples

Violation or satisfaction complete?

1 a./ sound and violation complete for ‘doesn’t start with a’.

2 a., sound and satisfaction complete for ‘starts with a’.

3 a./ not violation complete for ‘starts neither with a nor with
b’.

4 a./ + b./ sound and violation complete for ‘starts neither
with a nor with b’.

Luca Aceto An operational guide to monitorability 12 / 15

Completeness at work: Examples

Violation or satisfaction complete?

1 a./ sound and violation complete for ‘doesn’t start with a’.

2 a., sound and satisfaction complete for ‘starts with a’.

3 a./ not violation complete for ‘starts neither with a nor with
b’.

4 a./ + b./ sound and violation complete for ‘starts neither
with a nor with b’.

Luca Aceto An operational guide to monitorability 12 / 15

Completeness at work: Examples

Violation or satisfaction complete?

1 a./ sound and violation complete for ‘doesn’t start with a’.

2 a., sound and satisfaction complete for ‘starts with a’.

3 a./ not violation complete for ‘starts neither with a nor with
b’.

4 a./ + b./ sound and violation complete for ‘starts neither
with a nor with b’.

Luca Aceto An operational guide to monitorability 12 / 15

Levels of completeness (take 3)

Sound – everything has a sound monitor: ‘I don’t know’.

Informative – Existential Pnueli-Zaks

Persistently informative – Universal Pnueli-Zaks

Sound and either violation- or satisfaction-complete – Safety
and co-safety properties

Sound and Complete – only trivial properties have a sound
and complete monitor: , for True, / for False.

Luca Aceto An operational guide to monitorability 13 / 15

Levels of completeness (take 3)

Sound – everything has a sound monitor: ‘I don’t know’.

Informative – Existential Pnueli-Zaks

Persistently informative – Universal Pnueli-Zaks

Sound and either violation- or satisfaction-complete – Safety
and co-safety properties

Sound and Complete – only trivial properties have a sound
and complete monitor: , for True, / for False.

Addendum 1: The joys of syntactic characterizations (for regular
properties)

Example: Safety informative property = ϕ1 ∧ϕ2, where ϕ1 is in
the ‘safety fragment and contains false’. See

http://icetcs.ru.is/theofomon/SoSym.pdf.

Luca Aceto An operational guide to monitorability 13 / 15

http://icetcs.ru.is/theofomon/SoSym.pdf

Levels of completeness (take 3)

Sound – everything has a sound monitor: ‘I don’t know’.

Informative – Existential Pnueli-Zaks

Persistently informative – Universal Pnueli-Zaks

Sound and either violation- or satisfaction-complete – Safety
and co-safety properties

Sound and Complete – only trivial properties have a sound
and complete monitor: , for True, / for False.

Addendum 2: Monitorability depends on the semantic domain

Over infinite traces, all modal properties have sound and complete
monitors!

Luca Aceto An operational guide to monitorability 13 / 15

Further results

Correct-by-design, monitor-synthesis functions for
‘monitorable properties’ expressed in our touchstone logic.

Branching-time monitorability and its relations to linear-time
one.

Power of deterministic and parallel monitors: The cost of
monitoring deterministically and/or alone.

Monitoring the unmonitorable.

Tool detectEr for monitoring Erlang programs.

Runtime enforcement.

Projects TheoFoMon (2016–2020) and MoVeMnt (2021–2023)

Follow http://icetcs.ru.is/theofomon/ and https:

//sites.google.com/view/antonisachilleos/movemnt!

Luca Aceto An operational guide to monitorability 14 / 15

http://www.cs.um.edu.mt/svrg/Tools/detectEr/
http://icetcs.ru.is/theofomon/
https://sites.google.com/view/antonisachilleos/movemnt
https://sites.google.com/view/antonisachilleos/movemnt

Some future research directions

Apply our methodology to

distributed runtime
monitoring/enforcement,

logics over multiple traces,

probabilistic/real-
time/cyber-physical/smart
systems,

monitoring and ‘learning’ . . .

Study the relationships between
logics of knowledge and
monitoring.

Luca Aceto An operational guide to monitorability 14 / 15

Big Brothers and Sisters at Reykjavik University (and
elsewhere)

Take-home message (reloaded)

Monitorability comes in a spectrum!

Taking an operational view allows us to develop a systematic
theory of monitorability and monitor correctness.

Thank you!

Luca Aceto An operational guide to monitorability 15 / 15

