Gravity Trade Models: an Overview

Ahmad Lashkaripour
Pasargad Summer School, July 2017
Indiana University

A Bit of History

Early 1900s

- Once upon a time Comparative advantage looked pretty good as a description of trade.

Composition of British trade circa 1910

Late 1900s

- ... but trade patterns transformed over time:
countries exported the same goods they imported!

Composition of British trade in the 1990s

A General Trend

- The rise of intraindustry trade.

— High-income to high-income
- Low-income to high-income
- Medium-income to high-income - Low-income to low-income
— Low-income to medium-income — Medium-income to medium-income

Source: Brülhart 2008 for this Report.

Note: The Grubel-Lloyd index is the fraction of total trade that is accounted for by intraindustry trade.

What Drives Within-Industry Trade?

A straightforward explanation: Product Differentiation.

What Drives Within-Industry Trade?

What Drives Within-Industry Trade?

What Drives Within-Industry Trade?

Many other explanations based on:

1. Increasing returns to scale (Krugman 1980)
2. Comparative cost advantage (Eaton-Kortum 2002)
3. Firm heterogeneity (Chaney 2008)

A New Generation of Trade Models

- Many countries: $1, \ldots, N$
- Many industries: $1, \ldots, K$
- Trade across industries driven by comparative advantage.
- Trade within industries driven by forces of gravity.

Many micro-foundations, one equation!

The Gravity Equation

The gravity equation describes bilateral trade values within industry k :

$$
X_{j i, k}=\frac{\left(\tau_{j i, k} w_{j} / A_{j, k}\right)^{-\theta_{k}}}{\sum_{n}\left(\tau_{n i, k} w_{n} / A_{n, k}\right)^{-\theta_{k}}} E_{i, k}
$$

- $X_{j i, k}$: Exports sales from country j to i in industry k

The Gravity Equation: Elements

The gravity equation:

$$
X_{j i, k}=\frac{\left(\boldsymbol{\tau}_{\boldsymbol{j} i, \boldsymbol{k}} \boldsymbol{w}_{\boldsymbol{j}} / A_{j, k}\right)^{-\theta_{k}}}{\sum_{n}\left(\boldsymbol{\tau}_{\boldsymbol{n} i, \boldsymbol{k}} \boldsymbol{w}_{\boldsymbol{n}} / A_{n, k}\right)^{-\theta_{k}}} E_{i, k}
$$

The Gravity Equation: Elements

The gravity equation:

$$
X_{j i, k}=\frac{\left(\boldsymbol{\tau}_{\boldsymbol{j} i, \boldsymbol{k}} \boldsymbol{w}_{\boldsymbol{j}} / A_{j, k}\right)^{-\theta_{k}}}{\sum_{n}\left(\boldsymbol{\tau}_{\boldsymbol{n} i, k} \boldsymbol{w}_{\boldsymbol{n}} / A_{n, k}\right)^{-\theta_{k}}} E_{i, k}
$$

- $\tau_{j i, k}$: iceberg transport costs
- w_{j} : wage rate

The Gravity Equation: Elements

The gravity equation:

$$
X_{j i, k}=\frac{\left(\tau_{j i, k} w_{j} / A_{j, k}\right)^{-\theta_{k}}}{\sum_{n}\left(\tau_{n i, k} w_{n} / A_{j, k}\right)^{-\theta_{k}}} \boldsymbol{E}_{\boldsymbol{i}, \boldsymbol{k}}
$$

- $E_{i, k}$: country i 's total spending on sector k
- C-D utility across sectors $\Longrightarrow E_{i, k}=\alpha_{i, k} Y_{i}$
- Total income: $Y_{i}=$ wage \times population size $=w_{i} L_{i}$

The Gravity Equation: Elements

The gravity equation:

$$
X_{j i, k}=\frac{\left(\tau_{j i, k} w_{j} / \boldsymbol{A}_{\boldsymbol{j}, \boldsymbol{k}}\right)^{-\theta_{k}}}{\sum_{n}\left(\tau_{n i, k} w_{n} / \boldsymbol{A}_{\boldsymbol{n}, \boldsymbol{k}}\right)^{-\theta_{k}}} E_{i, k}
$$

- $A_{j, k}$: country j 's efficiency in sector k

$$
\begin{aligned}
& \text { 1. } L_{j, k}^{\psi_{k}}: \text { scale effects (} L_{j, k}: \text { size of sector-level labor force) } \\
& \text { 2. } T_{j, k}: \text { other factors (e.g., human capital) }
\end{aligned}
$$

The Gravity Equation: Elements

The gravity equation:

$$
X_{j i, k}=\frac{\left(\tau_{j i, k} w_{j} / \boldsymbol{A}_{\boldsymbol{j}, \boldsymbol{k}}\right)^{-\theta_{k}}}{\sum_{n}\left(\tau_{n i, k} w_{n} / \boldsymbol{A}_{\boldsymbol{n}, \boldsymbol{k}}\right)^{-\theta_{k}}} E_{i, k}
$$

- $A_{j, k}$: country j 's efficiency in sector k
- Two components: $A_{j, k}=T_{j, k} L_{j, k}^{\psi_{k}}$

1. $L_{j, k}^{\psi_{k}}$: scale effects ($L_{j, k}$: size of sector-level labor force)
2. $T_{j, k}$: other factors (e.g., human capital)

The Gravity Equation: Elements

The gravity equation:

$$
X_{j i, k}=\frac{\left(\tau_{j i, k} w_{j} / T_{j, k} L_{j, k}^{\psi_{k}}\right)^{-\boldsymbol{\theta}_{k}}}{\sum_{n}\left(\tau_{n i, k} w_{n} / T_{n, k} L_{n, k}^{\psi_{k}}\right)^{-\boldsymbol{\theta}_{k}}} E_{i, k}
$$

Two key parameters:

- θ_{k} : trade elasticity
- ψ_{k} : scale elasticity

First, let's put the gravity model in perspective.

The Gravity Model in Perspective

- The world economy:
- 196 countries
- 16 tradable industries (WIOD classification)
- The gravity equation characterizes a 196×196 matrix of trade values for each of the 16 sectors.

The Gravity Model in Perspective

- The world economy:
- 196 countries
- 16 tradable industries (WIOD classification)
- The gravity equation characterizes a 196×196 matrix of trade values for each of the 16 sectors.

The Gravity Model in Perspective: An Example

- Consider the US-EU trade.
- The gravity equation will predict intra-industry trade in all 16 industries, but...

The Gravity Model in Perspective: An Example

- Consider the US-EU trade.
- The gravity equation will predict intra-industry trade in all 16 industries, but...
- ... in some industries trade is rather balanced:

Medical Eq: $X_{U S \rightarrow E U, M E D .} \approx X_{E U \rightarrow U S, M E D .}=\$ 26 B$

The Gravity Model in Perspective: An Example

- Consider the US-EU trade.
- The gravity equation will predict intra-industry trade in all 16 industries, but...
- ... in some industries the EU is a net exporter:

Machinery: $X_{E U \rightarrow U S, M C H .}=\$ 70 B>X_{U S \rightarrow E U, M C H .}=\$ 31 B$

The Gravity Model in Perspective: An Example

- Consider the US-EU trade.
- The gravity equation will predict intra-industry trade in all 16 industries, but...
- ... in some industries the EU is a net importer:

Aircrafts: $X_{U S \rightarrow E U, A I R .}=\$ 35 B>X_{E U \rightarrow U S, A I R .}=\$ 2 B$

One Model, 2 Types of Trade

1. Within industry trade (governed by θ_{k})

$$
\text { lower } \theta_{k} \Longrightarrow \text { more within-industry trade }
$$

One Model, 2 Types of Trade

1. Within industry trade (governed by θ_{k})
lower $\theta_{k} \Longrightarrow$ more within-industry trade
2. Across industry trade (governed by $A_{j, k}$)
$\frac{A_{1, a}}{A_{2, a}}>\frac{A_{1, b}}{A_{2, b}} \Longrightarrow$ country 1 net exporter of industry "a" to 2

A special case: $\theta_{k} \longrightarrow \infty$

- No within-industry trade.
- The gravity framework reduces to a standard neoclassical trade model

How can we compute and asses the predictions of the gravity models?

- First: define the equilibrium.
- Second: calibrate the model

Equilibrium

- Exogenous components:
- Deep parameters: $\boldsymbol{\theta} \equiv\left\{\theta_{k}\right\}, \boldsymbol{\psi} \equiv\left\{\psi_{k}\right\}$
- Policy variables: $\boldsymbol{\tau} \equiv\left\{\tau_{j i, k}\right\}, \boldsymbol{L} \equiv\left\{L_{j}\right\}, \boldsymbol{T} \equiv\left\{T_{j, k}\right\}$
- Eq. outcome: $\boldsymbol{w} \equiv\left\{w_{j}\right\}$
- Eq. condition: $w_{i} L_{i}=\sum_{k} \sum_{i} X_{j i, k}(\boldsymbol{w} ; \boldsymbol{\tau}, \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{T})$

Calibration Strategy

- $\boldsymbol{\theta}$ and $\boldsymbol{\psi}$ require micro-level estimation.
- $\boldsymbol{L}, \boldsymbol{w}$, and \boldsymbol{X} are observable.

Calibration Goal:

- Choose $\boldsymbol{\tau}$ and $\boldsymbol{T}(N \times N \times K+N$ parameters $)$
- Match \boldsymbol{X} and $\boldsymbol{w}(N \times N \times K+N$ data points)

Calibration Strategy

- On paper, gravity models can exhibit a perfect fit...
- ... but "in practice" we prefer $\boldsymbol{\tau}$ to have some structure. Typically, researchers assume:

$$
\tau_{j i, k}=\beta_{k}\left(\text { Dist }_{j i}\right)^{\beta_{D, k}}\left(\text { Border }_{j i}\right)^{\beta_{B, k}}(\text { Lang gii })^{\beta_{L . k}}
$$

- $\boldsymbol{\tau}$ is characterized by $4 \times K$ parameters $\boldsymbol{\beta}$

Calibration Strategy

- On paper, gravity models can exhibit a perfect fit...
- ... but "in practice" we prefer $\boldsymbol{\tau}$ to have some structure.

Typically, researchers assume:

$$
\tau_{j i, k}=\beta_{k}\left(\text { Dist }_{j i}\right)^{\beta_{D, k}}\left(\text { Border }_{j i}\right)^{\beta_{B, k}}\left(\text { Lang }_{j i}\right)^{\beta_{L . k}}
$$

- $\boldsymbol{\tau}$ is characterized by $4 \times K$ parameters $\boldsymbol{\beta}$

Calibration Strategy

The calibration problem can be stated as

$$
\begin{aligned}
\min _{\boldsymbol{\beta}, \boldsymbol{T}} & \sum_{k} \sum_{j, i}\left(\hat{X}_{j i, k}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{w})-X_{j i, k}\right)^{2} \\
\text { s.t. } & w_{i} L_{i}=\sum \hat{X}_{j i, k}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{w})
\end{aligned}
$$

> - The structural approach (Anderson-Van Wincoop 2003, Fieler 2011)
> - The MPEC approach (Balistreri et al. 2011)
> - The reduced form PPML approach (Santos Silva-Tenreyro 2006)

Calibration Strategy

The calibration problem can be stated as

$$
\begin{aligned}
\min _{\boldsymbol{\beta}, \boldsymbol{T}} & \sum_{k} \sum_{j, i}\left(\hat{X}_{j i, k}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{w})-X_{j i, k}\right)^{2} \\
\text { s.t. } & w_{i} L_{i}=\sum \hat{X}_{j i, k}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{w})
\end{aligned}
$$

Multiple ways of handling the problem:

- The structural approach (Anderson-Van Wincoop 2003, Fieler 2011)
- The MPEC approach (Balistreri et al. 2011)
- The reduced form PPML approach (Santos Silva-Tenreyro 2006)

Calibration Strategy: Structural Approach

Inner loop:

- Fix $\boldsymbol{\beta}$
- For each \boldsymbol{T} we can compute $\hat{\boldsymbol{X}}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{w})$
- Solve for \boldsymbol{T} that satisfies

$$
w_{i} L_{i}=\sum \hat{X}_{j i, k}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \psi, \boldsymbol{L}, \boldsymbol{w})
$$

- Search for $\boldsymbol{\beta}$ that minimize $\left|\hat{\boldsymbol{X}}_{\text {inner loop }}-\boldsymbol{X}\right|$.

Calibration Strategy: Structural Approach

Inner loop:

- Fix $\boldsymbol{\beta}$
- For each \boldsymbol{T} we can compute $\hat{\boldsymbol{X}}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \psi, \boldsymbol{L}, \boldsymbol{w})$
- Solve for \boldsymbol{T} that satisfies

$$
w_{i} L_{i}=\sum \hat{X}_{j i, k}(\boldsymbol{T}, \boldsymbol{\beta} ; \boldsymbol{\theta}, \boldsymbol{\psi}, \boldsymbol{L}, \boldsymbol{w})
$$

Outer loop:

- Search for $\boldsymbol{\beta}$ that minimize $\left|\hat{\boldsymbol{X}}_{\text {inner loop }}-\boldsymbol{X}\right|$.

Calibration Strategy: Reduced Form

The gravity equation

$$
X_{j i, k}=\tau_{j i, k}^{-\theta_{k}} \underbrace{\left(\frac{w_{j}}{T_{j, k} L_{j, k}^{\psi_{k}}}\right)^{-\theta_{k}}}_{E X_{j, k}} \underbrace{\frac{E_{i, k}}{\sum_{n}\left(\tau_{n i, k} w_{n} / A_{n, k}\right)^{-\theta_{k}}}}_{I M_{i, k}}
$$

Calibration Strategy: Reduced Form

The gravity equation

$$
\ln X_{j i, k}=\theta_{k} \ln \beta_{k}+\theta_{k} \beta_{D, k} \ln D i s t_{j i}+E X_{j, k}+I M_{i, k}+\varepsilon_{j i, k}
$$

Challenge:

Plain OLS $\Longrightarrow E X_{j, k}$ and $I M_{i, k}$ may be inconsistent with "Balanced Trade".

Calibration Strategy: Reduced Form

The gravity equation

$$
\ln X_{j i, k}=\theta_{k} \ln \beta_{k}+\theta_{k} \beta_{D, k} \ln D i s t_{j i}+E X_{j, k}+I M_{i, k}+\varepsilon_{j i, k}
$$

Solution?

Use a PPML estimator (Fally 2013).

Goodness of Fit

Structural approach:

- Good fit when sample includes only rich countries.
- Poor fit when sample includes rich \& poor countries.

Reduced form approach:

- Importer FE offers an additional degree of freedom \Longrightarrow better fit (similar to a non-homothetic structural model).

Out-of-sample performance: Not great!

Implications

- Gravity models are used to answer policy questions.

Implications

- Gravity models are used to answer policy questions.
- One question has attracted the most attention.

"The Gains from Trade"

"The Gains from Trade"

Computing the Gains from Trade

One approach:

- Counterfactually set $\boldsymbol{\tau} \rightarrow \infty$ in the calibrated model
- Calculate the change in real income per worker.
- The gains from trade can be calculated without performing
the full calibration (Arkolkais-Costinot-Rodriguez Clare 2011)

Computing the Gains from Trade

One approach:

- Counterfactually set $\boldsymbol{\tau} \rightarrow \infty$ in the calibrated model
- Calculate the change in real income per worker.

However...

- The gains from trade can be calculated without performing
the full calibration (Arkolkais-Costinot-Rodripmez Clare 2011)

Computing the Gains from Trade

One approach:

- Counterfactually set $\boldsymbol{\tau} \rightarrow \infty$ in the calibrated model
- Calculate the change in real income per worker.

However...

- The gains from trade can be calculated without performing the full calibration (Arkolkais-Costinot-Rodriguez Clare 2011).

To demonstrate the ACR approach, let's start with a basic one-sector economy.

The Gains from Trade

Real income per worker can be state as:

$$
W_{i}=T_{j} \times L_{j}^{\psi} \times{\lambda_{i i}^{-\frac{1}{\theta}} \times \tau_{i i}^{-1} .}^{1}
$$

The Gains from Trade

The Gains from Trade

The welfare effects of reducing international trade costs.

$$
\hat{W}_{i}=\hat{\lambda}_{i i}^{-\frac{1}{\theta}}
$$

- Hat notation: $\hat{x} \equiv \frac{x^{\prime}}{x}$

The Gains from Trade

$$
G T_{i} \equiv \frac{W_{i}}{W_{i}^{A}}=\left(\frac{\lambda_{i i}}{\lambda_{i i}^{\mathrm{A}}}\right)^{-\frac{1}{\theta}}
$$

- in autarky $\lambda_{i i}^{A}=1$.
- θ can be estimated with micro-level data.

The Gains from Trade

$$
G T_{i}=\lambda_{i i}^{-\frac{1}{\theta}}
$$

- $\lambda_{i i}$ is directly observable.
- θ can be estimated with micro-level data.

The Gains from Trade (Year 2008, $\theta=5$)

	$\lambda_{i i}$	\% GT
Ireland	0.68	8%
Belgium	0.70	7.5%
Germany	0.80	4.5%
China	0.88	2.6%
U.S.	0.92	1.8%

- Iran: $\lambda_{i i}=0.8, G T=4.6 \%$

The Gains from Trade (Year 2008, $\theta=5$)

	$\lambda_{i i}$	\% GT
Ireland	0.68	8%
Belgium	0.70	7.5%
Germany	0.80	4.5%
China	0.88	2.6%
U.S.	0.92	1.8%

- Iran: $\lambda_{i i}=0.8, G T=4.6 \%$

First Extension: Allowing for Intermediate Trade

Allowing for Intermediate Inputs

Simplest way:

- Production combines labor and intermediates.
- $\boldsymbol{\beta} \in(0,1)$: share of labor in production
- Price of Intermediates inputs $=$ consumer price index $\equiv \boldsymbol{P}_{\boldsymbol{i}}$

$$
X_{j i}=\frac{\left(\tau_{j i, k} w_{j}^{\beta} P_{j}^{1-\beta} / A_{j, k}\right)^{-\theta_{k}}}{\sum_{n}\left(\tau_{n i, k} w_{n}^{\beta} P_{n}^{1-\beta} / A_{n, k}\right)^{-\theta_{k}}} E_{i, k}
$$

Gains from Trade with Intermediate Inputs

$$
G T_{i}=\lambda_{i i}^{-\frac{1}{\boldsymbol{\beta} \theta}}
$$

The Gains from Trade (Year 2008, $\theta=5, \beta=0.5$)

		$\%$ GT	
	$\lambda_{i i}$	baseline	intermediates
Ireland	0.68	8%	16.6%
Belgium	0.70	7.5%	15.6%
Germany	0.80	4.5%	9.2%
China	0.88	2.6%	5.3%
U.S.	0.92	1.8%	3.6%

Second Extension: Multiple

 Sectors
Gains from Trade: Multiple Sectors

Real income per worker

$$
W_{i}=T_{i} \pi_{i i}^{-1}\left(\prod_{s} L_{i, s}^{\beta_{i, s} \psi_{s}}\right)\left(\prod_{s} \lambda_{i i, s}^{-\frac{\beta_{i, s}}{\theta_{s}}}\right)
$$

Gains from Trade: Multiple Sectors

Real income per worker

$$
W_{i}=T_{i} \pi_{i i}^{-1}\left(\prod_{s} L_{i, s}^{\beta_{i, s} \psi_{s}}\right)\left(\prod_{s} \lambda_{i i, s}^{-\frac{\beta_{i, s}}{\boldsymbol{\theta}_{s}}}\right)
$$

Gains from Trade: Multiple Sectors

Real income per worker

$$
W_{i}=T_{i} \pi_{i i}^{-1}\left(\prod_{s} L_{i, s}^{\beta_{i, s} \psi_{s}}\right)\left(\prod_{s} \lambda_{i i, s}^{-\frac{\beta_{i, s}}{\theta_{s}}}\right)
$$

Gains from Trade: Multiple Sectors

$$
\begin{aligned}
& G T_{i}=\prod \hat{L}_{i, k}^{\alpha_{i, k} \psi_{k}} \prod^{\substack{a_{i, k} \\
\lambda_{i, k}^{k}}} \\
& \text { scale-driven }
\end{aligned}
$$

First, consider a competitive model:

- $\psi_{k}=0 \Longrightarrow$ scale-driven term $=0$
- We only need the sector-level trade elasticities: θ_{k}

Multiple Sectors + No Scale Effects

Multiple Sectors + No Scale Effects

\% GT

one-sector multi-sector

Ireland	8%	23.5%
Belgium	7.8%	32.7%
Germany	4.5%	12.7%
China	2.6%	4%
U.S.	1.8%	4.4%

Now, consider a model with scale effects:

- Gains also depend on sector-level scale elasticities, $\psi_{\mathbf{k}}$.
- High- ψ industries \Longrightarrow stronger scale economies
\Longrightarrow greater returns to specialization.
- Trade favors countries that specialize in high- ψ industries

Multiple Sectors + Scale Effects

$$
G T_{i}=\prod_{k} \hat{L}_{i, k}^{\alpha_{i, k} \boldsymbol{\psi}_{\boldsymbol{k}}} \prod_{k} \lambda_{i i, k}^{-\frac{\alpha_{i, k}}{\theta_{k}}}
$$

- $\hat{L}_{i, k} \equiv \frac{\text { factual employment }}{\text { autarky employment }}=\frac{r_{i, k}}{\alpha_{i, k}}$
- $r_{i, k}$: share of revenue generated in sector k

Gains from Trade \times Sectoral Specialization

Last Extension: Multiple Factors

Finally, consider a model with multiple factors of production. - Labor market structure:

- Different groups of workers: indexed by g.
- Roy model of industry choice.
- Group-wide abilities vary across sectors.
- Within-group heterogeneity.

Finally, consider a model with multiple factors of production.

- Labor market structure:
- Different groups of workers: indexed by g.
- Roy model of industry choice.
- Group-wide abilities vary across sectors.
- Within-group heterogeneity.

Gains from Trade: Multiple Factors

$$
\hat{W}_{i g}=\prod_{k} \hat{\lambda}_{i i, k}^{-\frac{\alpha_{i, k}}{\theta_{k}}} \underbrace{\prod_{k} \hat{\pi}_{i g, k}^{-\frac{\alpha_{i, k}}{\eta}}}_{\text {distributional effects }}
$$

- η : elasticity of labor supply.

Multiple Factors: Special Case1

$\eta \rightarrow \infty:$ standard one factor model

$$
\hat{W}_{i g}=\prod_{k} \hat{\lambda}_{i i, k}^{-\frac{\alpha_{i, k}}{\theta_{k}}}
$$

Multiple Factors: Special Case1

$\eta \rightarrow \infty:$ standard one factor model

$$
\frac{\hat{W}_{i g}}{\hat{W}_{i}}=1
$$

- No distributional effects.

Multiple Factors: Special Case 2

$\eta \rightarrow 1$: specific factor model

- Trade favors groups employed intensively in export sectors

Multiple Factors: Special Case 2

$\eta \rightarrow 1$: specific factor model

$$
\frac{\hat{W}_{i g}}{\hat{W}_{i}}=\prod_{k} \pi_{i g, s} \underbrace{\hat{r}_{i, s}}_{\substack{\text { change in } \\ \text { industry } \\ \text { size }}}
$$

- Trade favors groups employed intensively in export sectors

Multiple Factors: Special Case 2

$\eta \rightarrow 1$: specific factor model

Main insight:

- Trade favors groups employed intensively in export sectors

Next Step?

- This presentation was exclusively about removing non-revenue trade barriers...
- ...so is the vast majority of the literature.
- Tomorrow, we will talk about revenue generating trade harriers which are more relevant to nolicy

Next Step?

- This presentation was exclusively about removing non-revenue trade barriers...
- ...so is the vast majority of the literature.
- Tomorrow, we will talk about revenue generating trade barriers, which are more relevant to policy.

Next Step?

- This presentation was exclusively about removing non-revenue trade barriers...
- ...so is the vast majority of the literature.
- Tomorrow, we will talk about revenue generating trade barriers, which are more relevant to policy.

Thank you.

